Evaluation of Dietary Supplementation of a Multi-Carbohydrase Enzyme Complex on Growth Performance and Carcass Traits of Pekin Ducks Fed Corn–Soy Based Diets
Abstract
1. Introduction
2. Materials and Methods
2.1. Birds and General Management
2.2. Dietary Treatments
2.3. Enzyme Activity
2.4. Performance Evaluation
2.5. Bird Processing
2.6. Statistical Analysis
3. Results
3.1. Performance
3.2. Processing
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO STAT. Available online: https://www.fao.org/faostat/en/#data/QCL/visualize (accessed on 9 June 2024).
- Fouad, A.M.; Ruan, D.; Wang, S.; Chen, W.; Xia, W.; Zheng, C. Nutritional Requirements of Meat-Type and Egg-Type Ducks: What Do We Know? J. Anim. Sci. Biotechnol. 2018, 9, 1–11. [Google Scholar] [CrossRef]
- Park, J.; Carey, J.B. Dietary Enzyme Supplementation in Duck Nutrition: A review. J. Appl. Poult. Res. 2019, 28, 587–597. [Google Scholar] [CrossRef]
- Farrell, D.; Martin, E.A. Strategies to improve the nutritive value of rice bran in poultry diets. I. The addition of food enzymes to target the non-starch polysaccharide fractions in diets of chickens and ducks gave no response. Br. Poult. Sci. 1998, 39, 549–554. [Google Scholar] [CrossRef] [PubMed]
- Kang, P.; Hou, Y.; Toms, D.; Yan, N.; Ding, B.; Gong, J. Effects of enzyme complex supplementation to a paddy-based diet on performance and nutrient digestibility of meat-type ducks. Asian. Austral. J. Anim. 2013, 26, 253. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Q.; Huang, X.; Luo, Y.; Ding, X.; Bai, S.; Wang, J.; Xuan, Y.; Su, Z.; Liu, Y.; Zhang, K. Effects of a multi-enzyme complex on growth performance, nutrient utilization and bone mineralization of meat duck. J. Anim. Sci. Biotechnol. 2015, 6, 12. [Google Scholar] [CrossRef] [PubMed]
- Bedford, M.R.; Schulze, H. Exogenous enzymes for pigs and poultry. Nutr. Res. Rev. 1998, 11, 91–114. [Google Scholar] [CrossRef] [PubMed]
- Bailey, R.W. Structural carbohydrates. In Chemistry and Biochemistry of Herbage; Butlerand, G.W., Bailey, R.W., Eds.; Academic Press: New York, NY, USA, 1973; Volume 1, pp. 157–200. [Google Scholar]
- Khattak, F.M.; Pasha, T.N.; Hayat, Z.; Mahmud, A. Enzymes in poultry nutrition. J. Anim. Plant. Sci. 2006, 16, 1–7. [Google Scholar]
- Choct, M. Feed non-starch polysaccharides: Chemical structures and nutritional significance. Feed Mill. Int. 1997, 191, 13–27. [Google Scholar]
- Choct, M.; Dersjant-Li, Y.; McLeish, J.; Peisker, M. Soy oligosaccharides and soluble non-starch polisaccharides: A review of digestion, nutritive and antinutritive effects in pigs and poultry. Asia-Aust. J. Anim. Sci. 2010, 23, 1386–1398. [Google Scholar] [CrossRef]
- Bedford, M.R. Reduced viscosity of intestinal digesta and enhanced nutrient digestibility in chickens given exogenous enzymes. In Poultry and Swine Nutrition, Proceedings of the First Chinese Symposium on Feed Enzymes, Nanjing Agricultural University, Nanjing, China, 6–8 May 1996; Marquardt, R.R., Han, Z., Eds.; International Development Research Centre: Ottawa, ON, Canada, 1997; pp. 161–173. [Google Scholar]
- Jasek, A.; Latham, R.E.; Mañón, A.; Llamas-Moya, S.; Adhikari, R.; Poureslami, R.; Lee, J.T. Impact of a multicarbohydrase containing α-galactosidase and xylanase on ileal digestible energy, crude protein digestibility, and ileal amino acid digestibility in broiler chickens. Poult. Sci. 2018, 97, 3149–3155. [Google Scholar] [CrossRef]
- Khadem, A.; Lourenco, M.; Delezie, E.; Maertens, L.; Goderis, A.; Mombaerts, R.; Hofte, M.; Eeckhaut, V.; Van Immerseel, F.; Janssens, G.P.J. Does release of encapsulated nutrients have an important role in the efficacy of xylanase in broilers? Poult. Sci. 2016, 95, 1066–1076. [Google Scholar] [CrossRef] [PubMed]
- American Dairy Science Association(ADSA); the American Society of Animal Science (ASAS); the Poultry Science Association (PSA). Guide for the Care and Use of Agricultural Animals in Research and Teaching, 4th ed.; Tucker, C.B., MacNeil, M.D., Webster, A.B., Eds.; ADSA; ASAS; PSA: Champaign, IL, USA, 2020. [Google Scholar]
- National Research Council (NRC). Nutrient Requirements of Poultry, 9th ed.; National Academy Press: Washington, DC, USA, 1994. [Google Scholar]
- Leyva-Jimenez, H.; Burden, Y.; Soto, C.; McCormick, K.; Woodward, A.; Dirks, B. Effect of supplementing a multi-carbohydrase enzyme complex to corn−soy-based diets on growth performance, intestinal digesta viscosity, and carcass traits of broiler chickens. J. Appl. Poult. Res. 2024, 33, 100387. [Google Scholar] [CrossRef]
- Alqhtani, A.H.; Al Sulaiman, A.R.; Alharthi, A.S.; Abudabos, A.M. Effect of Exogenous Enzymes Cocktail on Performance, Carcass Traits, Biochemical Metabolites, Intestinal Morphology, and Nutrient Digestibility of Broilers Fed Normal and Low-Energy Corn–Soybean Diets. Animals 2022, 12, 1094. [Google Scholar] [CrossRef] [PubMed]
- Hashim, M.; Gonzalez-Sanchez, D.; Wealleans, A.; Abdelkader, M.; El-Safty, S.A.R.; Abdelhady, A.R.Y. Effects of Different Doses of Multienzyme Supplementation on Growth Performance, Duodenal pH and Morphology, and Carcass Traits in Broilers Fed Diets with an Increasing Reduction in Energy. Animals 2023, 13, 2378. [Google Scholar] [CrossRef]
- Richards, M.P.; Proszkowiec-Weglarz, M. Mechanisms Regulating Feed Intake, Energy Expenditure, and Body Weight in Poultry. Poult. Sci. 2007, 86, 1478–1490. [Google Scholar] [CrossRef]
- Leeson, S.; Summers, J.D. Commercial Poultry Nutrition, 3rd ed.; University Books: Guelph, ON, Canada, 2005; pp. 371–377. [Google Scholar]
- Höhne, A.; Petow, S.; Bessei, W.; Schrader, L. Contrafreeloading and Foraging-Related Behavior in Hens Differing in Laying Performance and Phylogenetic Origin. Poult. Sci. 2023, 102, 102489. [Google Scholar] [CrossRef]
- Han, H.Y.; Zhang, K.Y.; Ding, X.M.; Bai, S.P.; Luo, Y.H.; Wang, J.P.; Zeng, Q.F. Effect of dietary fiber levels on performance, gizzard development, intestinal morphology, and nutrient utilization in meat ducks from 1 to 21 days of age. Poult. Sci. 2017, 96, 4333–4341. [Google Scholar] [CrossRef] [PubMed]
- Hong, D.; Burrows, H.; Adeola, O. Addition of enzyme to starter and grower diets for ducks. Poult. Sci. 2002, 81, 842–1849. [Google Scholar] [CrossRef]
- Adeola, O.; Nyachoti, C.M.; Ragland, D. Energy and nutrient utilization responses of ducks to enzyme supplementation of soy-bean meal and wheat. Can. J. Anim. Sci. 2007, 87, 199–205. [Google Scholar] [CrossRef]
- Adeola, O.; Shafer, D.J.; Nyachoti, C.M. Nutrient and energy utilization in enzyme-supplemented starter and grower diets for White Pekin Ducks. Poult. Sci. 2008, 87, 255263. [Google Scholar] [CrossRef]
- Park, J.; Knape, K.D.; Carey, J.B. Effects of a Commercial Beta-Mannanase Product on the Performance, Intestinal pH, and Digesta Viscosity of Pekin Ducks. J. Appl. Poult. Res. 2019, 28, 447–453. [Google Scholar] [CrossRef]
- Debicki-Garnier, A.M.; Robin, N.; Messager, B. The effect of exogenous enzymes (amylase-protease-xylanase combination) on performance, liver and carcass characteristics of mule ducks. In Proceedings of the 15th European Symposium on Poultry Nutrition, Balatonfüred, Hungary, 25–29 September 2005; pp. 98–101. [Google Scholar]
- Angel, R.; Dhandu, A.S.; Applegate, T.J.; Christman, M. Phosphorus sparing effect of phytase, 25-hydroxycholecalciferol, and citric acid when fed to broiler chicks. Poult. Sci. 2001, 80 (Suppl. S1), 133. [Google Scholar]
- Walk, C.L.; Bedford, M.R.; McElroy, A.P. Influence of limestone and phytase on broiler performance, gastrointestinal pH, and apparent ileal nutrient digestibility. Poult. Sci. 2011, 91, 1371–1378. [Google Scholar] [CrossRef]
- El Enshasy, H.; Dailin, D.J.; Abd Manas, N.H.; Azlee, N.I.W.; Eyahmalay, J.; Yahaya, S.A.; Abd Malek, R.; Siwapiragam, V.; Si-wapiragam, D. Current and future applications of phytases in poultry industry: A critical review. J. Adv. Vet. Bio Sci. Techniq. 2018, 3, 65–74. [Google Scholar] [CrossRef]
- Ennis, C.E.; Jackson, M.; Gutierrez, O.; Cantley, S.; Wamsley, K.G.S. Phytase and carbohydrase inclusion strategies to explore synergy within low-energy diets to optimize 56-day male broiler performance and processing. J. Appl. Poult. Res. 2020, 29, 1045–1067. [Google Scholar] [CrossRef]
- Ei-Badry, A.; Mahrousa, F.; Fatouh, F.; El-Hakim, A. Role of phytase supplementation into Muscovy Ducks diet in thermo-and osmoregulation during summer season. Egypt. Poult. Sci. J. 2008, 28, 1059–1081. [Google Scholar]
- Yang, Z.B.; Huang, Z.Y.; Zhou, J.P.; Yang, W.R.; Jiang, S.Z.; Zhang, G.G. Effects of a new recombinant phytase on performance and mineral utilization of laying ducks fed phosphorus-deficient diets. J. Appl. Poult. Res. 2009, 18, 284–291. [Google Scholar] [CrossRef]
- Adeola, O. Phosphorus equivalency value of an Escherichia coli phytase in the diets of White Pekin ducks. Poul. Sci. 2010, 89, 1199–1206. [Google Scholar] [CrossRef]
- Liu, H.; Walk, C.L.; Sorbara, J.O.; Stamatopoulos, K.; Zhang, J.C.; Wu, J.L. Effects of graded levels of phytase supplementation on growth performance, plasma myo-inositol, tibia mineralization and nutrient digestibility of meat ducks fed phosphorus-deficient diets. Anim. Feed Sci. Technol. 2022, 290, 115364. [Google Scholar] [CrossRef]
Ingredient (%) | Positive Control | Negative Control | ||
---|---|---|---|---|
Starter | Grower | Starter | Grower | |
Cottonseed meal | 5.00 | 5.00 | 5.00 | 5.00 |
Yellow corn | 58.60 | 66.80 | 58.14 | 64.67 |
Dehulled soybean meal | 20.62 | 18.50 | 19.08 | 17.38 |
Wheat hard | 5.00 | 5.00 | 5.00 | 5.00 |
Wheat midds | 5.94 | 0.00 | 12.97 | 4.73 |
Soybean oil | 1.00 | 1.45 | 0.00 | 0.00 |
Vitamins 2 | 0.25 | 0.25 | 0.25 | 0.25 |
Minerals 3 | 0.05 | 0.05 | 0.05 | 0.05 |
Limestone | 1.39 | 1.23 | 1.39 | 1.23 |
Dicalcium phosphate | 0.66 | 0.48 | 0.60 | 0.44 |
Sodium chloride (salt) | 0.26 | 0.18 | 0.25 | 0.18 |
Sodium bicarbonate | 0.17 | 0.28 | 0.17 | 0.28 |
L-lysine HCl | 0.37 | 0.34 | 0.39 | 0.35 |
DL-Methionine | 0.37 | 0.22 | 0.38 | 0.22 |
L-Threonine | 0.14 | 0.07 | 0.15 | 0.08 |
Choline chloride | 0.06 | 0.06 | 0.06 | 0.06 |
Phytase 4 | 0.04 | 0.04 | 0.04 | 0.04 |
BMD 50 | 0.05 | 0.00 | 0.05 | 0.00 |
Calculated nutrient content (%) | ||||
ME (kcal/kg) | 2980 | 3120 | 2848 | 2988 |
Crude protein | 19.50 | 17.93 | 19.53 | 17.97 |
Crude fat | 3.96 | 4.44 | 3.04 | 3.07 |
Lysine, Dig | 1.10 | 1.00 | 1.10 | 1.00 |
Met + Cys, Dig | 0.90 | 0.72 | 0.90 | 0.72 |
Threonine, Dig | 0.70 | 0.60 | 0.70 | 0.60 |
Arginine, Dig | 1.17 | 1.07 | 1.17 | 1.07 |
NPP 4 | 0.27 | 0.22 | 0.27 | 0.22 |
Calcium 4 | 0.70 | 0.60 | 0.70 | 0.60 |
Sodium | 0.18 | 0.18 | 0.18 | 0.18 |
Analyzed nutrient content (%) | ||||
Crude protein | 17.6 | 16.6 | 17.7 | 17.5 |
Calcium | 0.68 | 0.71 | 0.82 | 0.65 |
Sodium | 0.14 | 0.13 | 0.15 | 0.14 |
Crude fat | 3.60 | 6.71 | 1.69 | 3.33 |
TRT 1 | Growth Phase (Xylanase Units/kg of Feed) 2 | |
---|---|---|
Starter (0–14 d) | Gower (15–35 d) | |
PC | 84 | 36 |
NC | 55 | 18 |
MCE75 | 618 | 416 |
MCE100 | 995 | 604 |
MCE125 | 1054 | 859 |
TRT 1 | Initial BW | BW 14 d | BW 35 d | BWG 1–14 d | BWG 15–35 d | BWG 1–35 d | FCR 1–14 d | FCR 15–35 d | FCR 1–35 d | C-FCR 2 1–35 d |
---|---|---|---|---|---|---|---|---|---|---|
PC | 0.052 | 0.852 a | 3.485 a | 0.800 a | 2.633 | 3.433 a | 1.194 c | 1.440 | 1.379 b | 1.379 b |
NC | 0.055 | 0.781 b | 3.301 b | 0.726 b | 2.519 | 3.245 b | 1.405 a | 1.481 | 1.460 a | 1.516 a |
E75 | 0.052 | 0.834 a | 3.435 a | 0.782 a | 2.601 | 3.383 a | 1.312 b | 1.431 | 1.402 b | 1.417 b |
E100 | 0.053 | 0.842 a | 3.472 a | 0.790 a | 2.630 | 3.419 a | 1.332 b | 1.450 | 1.421 ab | 1.425 b |
E125 | 0.052 | 0.832 a | 3.454 a | 0.780 a | 2.622 | 3.402 a | 1.342 ab | 1.445 | 1.419 ab | 1.429 b |
SEM | 0.001 | 0.008 | 0.031 | 0.008 | 0.029 | 0.030 | 0.025 | 0.019 | 0.015 | 0.021 |
p-value | 0.307 | <0.001 | <0.001 | <0.001 | 0.051 | <0.001 | <0.001 | 0.426 | 0.011 | 0.001 |
Linear | - | < 0.001 | 0.002 | <0.001 | 0.022 | 0.002 | 0.176 | 0.306 | 0.171 | 0.019 |
Quadratic | - | <0.001 | 0.024 | <0.001 | 0.164 | 0.024 | 0.072 | 0.262 | 0.093 | 0.032 |
TRT 1 | ADFI 1–14 d | ADFI 15–35 d | ADFI 1–35 d | MORT 1–14 d | MORT 15–35 d | MORT 1–35 d |
---|---|---|---|---|---|---|
PC | 68.48 b | 166.48 | 125.63 | 0.40 | 2.01 | 2.40 |
NC | 73.09 a | 163.77 | 127.19 | 0.40 | 0.40 | 0.80 |
E75 | 73.54 a | 163.01 | 126.10 | 0.80 | 1.62 | 2.40 |
E100 | 75.51 a | 165.56 | 128.19 | 0.80 | 1.60 | 2.40 |
E125 | 75.54 a | 165.61 | 126.97 | 2.00 | 2.08 | 4.00 |
SEM | 1.40 | 2.13 | 1.65 | - | - | - |
p-value | 0.009 | 0.769 | 0.835 | 0.187 | 0.512 | 0.500 |
Linear | 0.190 | 0.396 | 0.854 | - | - | - |
Quadratic | 0.894 | 0.849 | 0.970 | - | - | - |
TRT 1 | LBW | WOG | BRW | LEW | Carcass Yield % | Breast Yield % | Leg Yield % |
---|---|---|---|---|---|---|---|
PC | 3.438 a | 2.344 a | 0.649 a | 0.590 a | 68.18 | 27.69 ab | 25.21 |
NC | 3.244 b | 2.188 b | 0.588 b | 0.562 b | 67.46 | 26.85 b | 25.71 |
E75 | 3.441 a | 2.316 a | 0.639 a | 0.576 ab | 67.32 | 27.55 ab | 24.89 |
E100 | 3.453 a | 2.336 a | 0.631 a | 0.589 a | 67.67 | 26.97 b | 25.28 |
E125 | 3.404 a | 2.301 a | 0.645 a | 0.582 a | 67.60 | 28.02 a | 25.30 |
SEM | 0.03 | 0.02 | 0.01 | 0.007 | 0.24 | 0.31 | 0.25 |
p-value | <0.001 | <0.001 | <0.001 | 0.028 | 0.113 | 0.038 | 0.236 |
Linear | <0.001 | <0.001 | <0.001 | 0.017 | 0.470 | 0.039 | 0.424 |
Quadratic | <0.001 | <0.001 | 0.071 | 0.116 | 0.884 | 0.569 | 0.082 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leyva-Jimenez, H.; Jiral, E.; Grimes, M.; Rocha, J.J.; Soto, C.; Burden, Y.; Dirks, B.P.; Archer, G.S. Evaluation of Dietary Supplementation of a Multi-Carbohydrase Enzyme Complex on Growth Performance and Carcass Traits of Pekin Ducks Fed Corn–Soy Based Diets. Poultry 2024, 3, 307-317. https://doi.org/10.3390/poultry3030023
Leyva-Jimenez H, Jiral E, Grimes M, Rocha JJ, Soto C, Burden Y, Dirks BP, Archer GS. Evaluation of Dietary Supplementation of a Multi-Carbohydrase Enzyme Complex on Growth Performance and Carcass Traits of Pekin Ducks Fed Corn–Soy Based Diets. Poultry. 2024; 3(3):307-317. https://doi.org/10.3390/poultry3030023
Chicago/Turabian StyleLeyva-Jimenez, Hector, Emily Jiral, Melinda Grimes, Jessica J. Rocha, Carlos Soto, Yemi Burden, Brian P. Dirks, and Gregory S. Archer. 2024. "Evaluation of Dietary Supplementation of a Multi-Carbohydrase Enzyme Complex on Growth Performance and Carcass Traits of Pekin Ducks Fed Corn–Soy Based Diets" Poultry 3, no. 3: 307-317. https://doi.org/10.3390/poultry3030023
APA StyleLeyva-Jimenez, H., Jiral, E., Grimes, M., Rocha, J. J., Soto, C., Burden, Y., Dirks, B. P., & Archer, G. S. (2024). Evaluation of Dietary Supplementation of a Multi-Carbohydrase Enzyme Complex on Growth Performance and Carcass Traits of Pekin Ducks Fed Corn–Soy Based Diets. Poultry, 3(3), 307-317. https://doi.org/10.3390/poultry3030023