Metabolizable Energy Value of Fat and Meals Obtained from Black Soldier Fly Larvae (Hermetia illucens) for Broiler Chickens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Insect Larvae Meals, Insect Oil, and Experimental Diets
2.2. Birds, Management, and Sample Collection
2.3. Laboratory Analysis
2.4. Calculations
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Font-I-Furnols, M. Meat consumption, sustainability and alternatives: An overview of motives and barriers. Foods 2023, 12, 2144. [Google Scholar] [CrossRef] [PubMed]
- Kaczmarek, S.A.; Kasprowicz-Potocka, M.; Hejdysz, M.; Mikuła, R.; Rutkowski, A. The nutritional value of narrow-leafed lupin (Lupinus angustifolius) for broilers. J. Anim. Feed Sci. 2014, 23, 160–166. [Google Scholar] [CrossRef]
- Geiker, N.R.W.; Bertram, H.C.; Mejborn, H.; Dragsted, L.O.; Kristensen, L.; Carrascal, J.R.; Bügel, S.; Astrup, A. Meat and human health-Current knowledge and research gaps. Foods 2021, 10, 1556. [Google Scholar] [CrossRef] [PubMed]
- Oso, A.O.; Williams, G.A.; Oluwatosin, O.O.; Bamgbose, A.M.; Adebayo, A.O.; Olowofeso, O.; Pirgozliev, V.; Adegbenjo, A.A.; Osho, S.O.; Alabi, J.O.; et al. Effect of dietary supplementation with arginine on haematological indices, serum chemistry, carcass yield, gut microflora, and lymphoid organs of growing turkeys. Livest. Sci. 2017, 198, 58–64. [Google Scholar] [CrossRef]
- Benzertiha, A.; Kierończyk, B.; Rawski, M.; Mikołajczak, Z.; Urbański, A.; Nogowski, L.; Józefiak, D. Insect fat in animal nutrition–a review. Ann. Anim. Sci. 2020, 20, 1217–1240. [Google Scholar] [CrossRef]
- FAOSTAT Statistical Database. Available online: https://www.fao.org/statistics/en/ (accessed on 13 May 2022).
- IDH & IUCN NL. European Soy Monitor. Researched by B. Kuepper and M. Riemersma of Profundo. IDH, The Sustainable Trade Initiative and IUCN. National Committee of the Netherlands. 2020. Available online: https://www.idhsustainabletrade.com/uploaded/2019/04/European-Soy-Monitor.pdf (accessed on 7 August 2024).
- Esteves, V.P.P.; Esteves, E.M.M.; Bungenstab, D.J.; Loebmann, D.G.D.S.W.; Victoria, C.; Vicente, L.E.; Araújo, Q.F.; Morgado, R.V. Land use change (LUC) analysis and life cycle assessment (LCA) of Brazilian soybean biodiesel. Clean Technol. Environ. Policy 2016, 18, 1655–1673. [Google Scholar] [CrossRef]
- Garofalo, D.F.T.; Novaes, R.M.L.; Pazianotto, R.A.; Maciel, V.G.; Brandão, M.; Shimbo, J.Z.; Folegatti-Matsuura, M.I. Land-use change CO2 emissions associated with agricultural products at municipal level in Brazil. J. Clean. Prod. 2022, 364, 132549. [Google Scholar] [CrossRef]
- Grossi, S.; Massa, V.; Giorgino, A.; Rossi, L.; Dell’Anno, M.; Pinotti, L.; Avidano, F.; Compiani, R.; Rossi, C.A.S. Feeding Bakery Former Foodstuffs and Wheat Distiller’s as Partial Replacement for Corn and Soybean Enhances the Environmental Sustainability and Circularity of Beef Cattle Farming. Sustainability 2022, 14, 4908. [Google Scholar] [CrossRef]
- Longvah, T.; Mangthya, K.; Ramulu, P. Nutrient composition and protein quality evaluation of eri silkworm (Samia ricinii) prepupae and pupae. Food Chem. 2011, 128, 400–403. [Google Scholar] [CrossRef]
- Liceaga, A.M. Processing insects for use in the food and feed industry. Curr. Opin. Insect. Sci. 2021, 48, 32–36. [Google Scholar] [CrossRef]
- Józefiak, A.; Engberg, R.M. Insect proteins as a potential source of antimicrobial peptides in livestock production. A review. J. Anim. Feed Sci. 2017, 26, 87–99. [Google Scholar] [CrossRef]
- Kierończyk, B.; Rawski, M.; Józefiak, A.; Mazurkiewicz, J.; Świątkiewicz, S.; Siwek, M.; Bednarczyk, M.; Szumacher-Strabel, M.; Cieślak, A.; Benzertiha, A.; et al. Effects of replacing soybean oil with selected insect fats on broilers. Anim. Feed Sci. Tech. 2018, 240, 170–183. [Google Scholar] [CrossRef]
- Lalev, M.; Hristakieva, P.; Mincheva, N.; Oblakova, M.; Ivanova, I. Insect meal as alternative protein ingredient in broiler feed. Bulg. J. Agric. Sci. 2022, 28, 743–751. [Google Scholar]
- Mahmoud, A.E.; Morel, P.C.H.; Ravindran, V. The apparent metabolisable energy and ileal amino digestibility of black soldier fly (Hermetia illucens) larvae meal for broiler chickens. Brit. Poult. Sci. 2023, 64, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Makkar, H.P.; Tran, G.; Heuzé, V.; Ankers, P. State-of-the-art on use of insects as animal feed. Anim. Feed Sci. Technol. 2014, 197, 1–33. [Google Scholar] [CrossRef]
- Biasato, I.; Gasco, L.; De Marco, M.; Renna, M.; Rotolo, L.; Dabbou, S.; Capucchio, M.T.; Biasibetti, E.; Tarantola, M.; Sterpone, L.; et al. Yellow mealworm larvae (Tenebrio molitor) inclusion in diets for male broiler chickens: Effects on growth performance, gut morphology, and histological findings. Poult. Sci. 2018, 97, 540–548. [Google Scholar] [CrossRef]
- Petkov, E.; Ignatova, M.; Popova, T. Layers’ performance and egg hatchability as affected by the dietary inclusion of two meals of black soldier fly (Hermetia illucens). J. Insects Food Feed 2022, 8, 1077–1084. [Google Scholar] [CrossRef]
- Kierończyk, B.; Rawski, M.; Stuper-Szablewska, K.; Józefiak, D. First report of the apparent metabolisable energy value of black soldier fly larvae fat used in broiler chicken diets. Animal 2022, 16, 100656. [Google Scholar] [CrossRef]
- De Marco, M.; Martínez, S.; Hernandez, F.; Madrid, J.; Gai, F.; Rotolo, L.; Belforti, M.; Bergero, D.; Atz, H.; Dabbou, S. Nutritional Value of Two Insect Larval Meals (Tenebrio molitor and Hermetia illucens) for Broiler Chickens: Apparent Nutrient Digestibility, Apparent Ileal Amino Acid Digestibility and Apparent Metabolizable Energy. Anim. Feed Sci. Technol. 2015, 209, 211–218. [Google Scholar] [CrossRef]
- Marono, S.; Loponte, R.; Lombardi, P.; Vassalotti, G.; Pero, M.E.; Russo, F.; Gasco, L.; Parisi, G.; Piccolo, G.; Nizza, S.; et al. Productive performance and blood profiles of laying hens fed Hermetia illucens larvae meal as total replacement of soybean meal from 24 to 45 weeks of age. Poult. Sci. 2017, 96, 1783–1790. [Google Scholar] [CrossRef]
- Schiavone, A.; De Marco, M.; Martínez, S.; Dabbou, S.; Renna, M.; Madrid, J.; Hernandez, F.; Rotolo, L.; Costa, P.; Gai, F.; et al. Nutritional value of a partially defatted and a highly defatted black soldier fly larvae (Hermetia illucens L.) meal for broiler chickens: Apparent nutrient digestibility, apparent metabolizable energy and apparent ileal amino acid digestibility. J. Anim. Sci. Biotechnol. 2017, 8, 51. [Google Scholar] [CrossRef] [PubMed]
- Benzertiha, A.; Kieronczyk, B.; Rawski, M.; Jozefiak, A.; Kozłowski, K.; Jankowski, J.; Józefiak, D. Tenebrio molitor and Zophobas morio full-fat meals in broiler chicken diets: Effects on nutrients digestibility, digestive enzyme activities, and cecal microbiome. Animals 2019, 9, 1128. [Google Scholar] [CrossRef]
- Matin, N.; Utterback, P.; Parsons, C. True Metabolisable Energy and Amino Acid Digestibility of Black Soldier Fly Larvae Meals, Cricket Meal, and Mealworms Using a Precision-fed Rooster Assay. Poult. Sci. 2021, 100, 101146. [Google Scholar] [CrossRef]
- Popova, T.; Petkov, E.; Ignatova, M. Effect of black soldier fly (Hermetia illucens) meals in the diet on the growth performance and carcass composition in broilers. J. Insects Food Feed 2021, 7, 369–376. [Google Scholar] [CrossRef]
- (EU)142/2011; Implementing Regulation (EC) No1069/2009 of the European Parliament and of the Council Laying Down Health Rules as Regards Animal By-Products and Derived Products not Intended for Human Consumption and Implementing Council Directive 97/78/EC as Regards Certain Samples. Commission Regulation: Luxembourg, 2011.
- AOAC. Official Methods of Analysis, 17th ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Janssen, R.H.; Vincken, J.P.; van den Broek, L.A.; Fogliano, V.; Lakemond, C.M. Nitrogen-to-protein conversion factors for three edible insects: Tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens. J. Agric. Food Chem. 2017, 65, 2275–2278. [Google Scholar] [CrossRef] [PubMed]
- Chobanova, S.; Karkelanov, N.; Mansbridge, S.C.; Whiting, I.M.; Simic, A.; Rose, S.P.; Pirgozliev, V.R. Defatted black soldier fly larvae meal as an alternative to soybean meal for broiler chickens. Poultry 2023, 2, 430–441. [Google Scholar] [CrossRef]
- Pirgozliev, V.R.; Mansbridge, S.C.; Westbrook, C.A.; Woods, S.L.; Rose, S.P.; Whiting, I.M.; Yovchev, D.G.; Atanasov, A.G.; Kljak, K.; Staykova, G.P.; et al. Feeding dihydroquercetin and vitamin E to broiler chickens reared at standard and high ambient temperatures. Arch. Anim. Nutr. 2020, 74, 496–511. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- Hill, F.W.; Anderson, D.C. Comparison of the Metabolisable Energy and Production Energy Determination with Growing Chicks. J. Nutr. 1958, 64, 587–603. [Google Scholar] [CrossRef]
- Pirgozliev, V.; Bravo, D.; Rose, S.P. Rearing conditions influence nutrient availability of plant extracts supplemented diets when fed to broiler chickens. J. Anim. Phys. Anim. Nutr. 2014, 98, 667–671. [Google Scholar] [CrossRef]
- Cullere, M.; Tasoniero, G.; Giaccone, V.; Miotti-Scapin, R.; Claeys, E.; De Smet, S.; DalleZotte, A. Black soldier fly as dietary protein source for broiler quails: Apparent digestibility, excreta microbial load, feed choice, performance, carcass and meat traits. Animal 2016, 10, 1923–1930. [Google Scholar] [CrossRef] [PubMed]
- Whiting, I.M.; Pirgozliev, V.; Rose, S.P.; Wilson, J.; Amerah, A.M.; Ivanova, S.G.; Staykova, G.P.; Oluwatosin, O.O.; Oso, A.O. Nutrient availability of different batches of wheat distillers dried grains with solubles with and without exogenous enzymes for broiler chickens. Poult. Sci. 2017, 96, 574–580. [Google Scholar] [CrossRef] [PubMed]
- Abdulla, J.M.; Rose, S.P.; Mackenzie, A.M.; Pirgozliev, V.R. Variation in the Chemical Composition and the Nutritive Quality of Different Field Bean UK Grown Cultivar Samples for Broiler Chicks. Brit. Poult. Sci. 2020, 62, 219–250. [Google Scholar] [CrossRef] [PubMed]
- Watts, E.S.; Rose, S.P.; Mackenzie, A.M.; Pirgozliev, V.R. The effects of supercritical carbon dioxide extraction and coldpressed hexane extraction on the chemical composition and feeding value of rapeseed meal for broiler chickens. Arch. Anim. Nutr. 2020, 74, 57–71. [Google Scholar] [CrossRef] [PubMed]
- Watts, E.S.; Rose, S.P.; Mackenzie, A.M.; Pirgozliev, V.R. Investigations into the chemical composition and nutritional value of single-cultivar rapeseed meals for broiler chickens. Arch. Anim. Nutr. 2021, 75, 209–221. [Google Scholar] [CrossRef]
- Karkelanov, N.; Chobanova, S.; Whiting, I.M.; Dimitrova, K.; Rose, S.P.; Pirgozliev, V. Pelleting increases the metabolizable energy of de-hulled sunflower seed meal for broilers. S. Afr. J. Anim. Sci. 2021, 51, 290–295. [Google Scholar] [CrossRef]
- Ravindran, V.; Abdollahi, M.R.; Bootwalla, S.M. Nutrient Analysis, Metabolizable Energy, and Digestible Amino Acids of Soybean Meals of Different Origins for Broilers. Poult. Sci. 2014, 93, 2567–2577. [Google Scholar] [CrossRef]
- Choct, M.; Annison, G. Anti-nutritive activity of wheat pentosans in broiler diets. Brit. Poult. Sci. 1990, 31, 811–821. [Google Scholar] [CrossRef]
- Pirgozliev, V.R.; Rose, S.P.; Pellny, T.; Amerah, A.M.; Wickramasinghe, M.; Ulker, M.; Rakszegi, M.; Bedo, Z.; Shewry, P.R.; Lovegrove, A. Energy utilization and growth performance of chickens fed novel wheat inbred lines selected for different pentosan levels with and without xylanase supplementation. Poult. Sci. 2015, 94, 232–239. [Google Scholar] [CrossRef]
- Lubitz, J.A.; Fellers, C.R.; Parkhurst, R.T. Crab Meal in Poultry Rations: I. Nutritive Properties. Poult. Sci. 1943, 22, 307–313. [Google Scholar] [CrossRef]
- Kobayashi, S.; Itoh, H. Effects of Dietary Chitin and Chitosan on Growth and Abdominal Fat Deposition in Chicks. Jpn. Poult. Sci. 1991, 28, 88–94. [Google Scholar] [CrossRef]
- Huyghebaert, G.; De Munter, G.; De Groote, G. The metabolisable energy (AMEn) of fats for broilers in relation to their chemical composition. Anim. Feed. Sci. Technol. 1988, 20, 45–58. [Google Scholar] [CrossRef]
- Tancharoenrat, P.; Ravindran, V.; Zaefarian, F.; Ravindran, G. Influence of age on the apparent metabolisable energy and total tract apparent fat digestibility of different fat sources for broiler chickens. Anim. Feed Sci. Techn 2013, 186, 186–192. [Google Scholar] [CrossRef]
- Murugesan, G.R.; Kerr, B.J.; Persia, M.E. Energy content of select dietary supplemental lipids for broilers, turkeys, and laying hens. J. Appl. Poult. Res. 2017, 26, 536–547. [Google Scholar] [CrossRef]
- INRAE-CIRAD-AFZ. INRAE-CIRAD-AFZ-Tables of Composition and Nutritional Values of Feed Materials. 2022. Available online: https://www.feedtables.com (accessed on 15 March 2024).
- Hakansson, J. Factors affecting the digestibility of fats and fatty acids in chicks and hens. Swed. J. Agric. Res. 1974, 4, 33–47. [Google Scholar]
- Percie du Sert, N.; Hurst, V.; Ahluwalia, A.; Alam, S.; Avey, M.T.; Baker, M.; Browne, W.J.; Clark, A.; Cuthill, I.C.; Dirnagl, U.; et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. J. Cereb. Blood Flow Metab. 2020, 40, 1769–1777. [Google Scholar] [CrossRef]
Ingredients (g/kg) | Basal Feed |
---|---|
Maize | 322.00 |
Wheat | 280.00 |
Sunflower meal (36% CP) | 80.00 |
Soybean meal (46% CP) | 230.00 |
Lysine | 2.90 |
Methionine | 1.40 |
Threonine | 0.85 |
NaCL | 2.50 |
Sodium bicarbonate | 2.00 |
Vitamin and mineral premix 1 | 2.00 |
Choline chloride | 1.85 |
Monocalcium phosphate | 5.50 |
Calcium carbonate | 15.00 |
Vegetable oil | 54.00 |
1000 | |
Calculated analysis (as fed): | |
Crude protein (g/kg) | 195 |
Metabolisable energy (MJ/kg) | 12.91 |
Crude fat (g/kg) | 75.7 |
Ca (g/kg) | 8.5 |
Available P (g/kg) | 5.5 |
Lysine (g/kg) | 11.5 |
Methionine (g/kg) | 4.6 |
Analyzed composition (as fed): | |
Gross energy (MJ/kg) | 17.06 |
Dry matter (g/kg) | 920 |
Crude protein (g/kg) | 181 |
Crude fat (g/kg) | 66 |
Item | Crude Protein (g/kg) | Ether Extract (g/kg) | Gross Energy (MJ/kg) | Dry Matter (g/kg) | NDF (g/kg) | ADF (g/kg) |
---|---|---|---|---|---|---|
BSM | 459 | 171 | 22.04 | 963 | 210 | 95 |
BSL | 399 | 240 | 22.78 | 940 | 333 | 93 |
LF | - | 923 | 38.16 | 997 | - | - |
Item | BW Start (g) | BW End (g) | FI (g/day) | WG (g/day) | FCR (g:g) |
---|---|---|---|---|---|
BF | 1166 | 1699 | 149.9 | 76.1 | 1.985 |
BSMd | 1184 | 1722 | 136.3 | 76.8 | 1.783 |
BSLd | 1190 | 1678 | 131.1 | 69.6 | 1.888 |
LFd | 1184 | 1658 | 132.9 | 67.7 | 1.980 |
SEM | 26.5 | 42.3 | 5.75 | 4.08 | 0.0606 |
p-value | 0.926 | 0.742 | 0.122 | 0.312 | 0.092 |
Item | DMR | NR | FR | GER | AME (MJ/kg DM) | AMEn (MJ/kg DM) |
---|---|---|---|---|---|---|
BF | 0.782 | 0.721 | 0.826 a | 0.786 | 13.30 a | 12.49 a |
BSMd | 0.770 | 0.718 | 0.912 b | 0.791 | 13.79 a | 12.97 a |
BSLd | 0.758 | 0.710 | 0.918 b | 0.785 | 13.74 a | 12.89 a |
LFd | 0.797 | 0.747 | 0.900 b | 0.820 | 15.63 b | 14.79 b |
SEM | 0.0118 | 0.0218 | 0.0186 | 0.0122 | 0.213 | 0.207 |
p-value | 0.156 | 0.657 | 0.008 | 0.163 | <0.001 | <0.001 |
Item | GER | DMR | NR | AME (MJ/kg DM) | AMEn (MJ/kg DM) |
---|---|---|---|---|---|
BSM | 0.824 | 0.663 | 0.690 | 18.20 a | 17.40 a |
BSL | 0.774 | 0.542 | 0.610 | 17.60 a | 16.50 a |
LF | 0.957 | 0.927 | - | 36.50 b | 35.60 b |
SEM | 0.0851 | 0.1167 | 0.2030 | 2.030 | 1.990 |
p-value | 0.321 | 0.090 | 0.415 | <0.001 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chobanova, S.; Karkelanov, N.; Mansbridge, S.C.; Whiting, I.M.; Tukša, M.; Rose, S.P.; Pirgozliev, V.R. Metabolizable Energy Value of Fat and Meals Obtained from Black Soldier Fly Larvae (Hermetia illucens) for Broiler Chickens. Poultry 2024, 3, 298-306. https://doi.org/10.3390/poultry3030022
Chobanova S, Karkelanov N, Mansbridge SC, Whiting IM, Tukša M, Rose SP, Pirgozliev VR. Metabolizable Energy Value of Fat and Meals Obtained from Black Soldier Fly Larvae (Hermetia illucens) for Broiler Chickens. Poultry. 2024; 3(3):298-306. https://doi.org/10.3390/poultry3030022
Chicago/Turabian StyleChobanova, Sashka, Nikolay Karkelanov, Stephen Charles Mansbridge, Isobel Margaret Whiting, Marko Tukša, Stephen Paul Rose, and Vasil Radoslavov Pirgozliev. 2024. "Metabolizable Energy Value of Fat and Meals Obtained from Black Soldier Fly Larvae (Hermetia illucens) for Broiler Chickens" Poultry 3, no. 3: 298-306. https://doi.org/10.3390/poultry3030022
APA StyleChobanova, S., Karkelanov, N., Mansbridge, S. C., Whiting, I. M., Tukša, M., Rose, S. P., & Pirgozliev, V. R. (2024). Metabolizable Energy Value of Fat and Meals Obtained from Black Soldier Fly Larvae (Hermetia illucens) for Broiler Chickens. Poultry, 3(3), 298-306. https://doi.org/10.3390/poultry3030022