The Effect of Supplementation with Organic Acid and Oregano Oils in Drinking Water on Pekin Duck Growth and Welfare
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. General Husbandry
2.2. Growth Parameters
2.3. Gut Health Parameters
2.3.1. Intestinal pH levels
2.3.2. Ileum Sampling and Histomorphology
2.4. Stress Parameters
2.4.1. Heterophil-to-Lymphocyte Ratio and Plasma Corticosterone
2.4.2. Footpad Lesion Parameters
2.4.3. Composite Asymmetry Score
2.4.4. Bone Breaking Strength and Bone Ash Determination
2.5. Statistical Analysis
3. Results
3.1. Performance and Mortality
3.2. Intestinal Health and Welfare Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdelli, N.; Solà-Oriol, D.; Pérez, J.F. Phytogenic Feed Additives in Poultry: Achievements, Prospective and Challenges. Animals 2021, 11, 3471. [Google Scholar] [CrossRef] [PubMed]
- Windisch, W.; Schedle, K.; Plitzner, C.; Kroismayr, A. Use of Phytogenic Products as Feed Additives for Swine and Poultry1. J. Anim. Sci. 2008, 86, E140–E148. [Google Scholar] [CrossRef] [PubMed]
- Zhai, H.; Liu, H.; Wang, S.; Wu, J.; Kluenter, A.-M. Potential of Essential Oils for Poultry and Pigs. Anim. Nutr. 2018, 4, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Shehata, A.A.; Yalçın, S.; Latorre, J.D.; Basiouni, S.; Attia, Y.A.; Abd El-Wahab, A.; Visscher, C.; El-Seedi, H.R.; Huber, C.; Hafez, H.M.; et al. Probiotics, Prebiotics, and Phytogenic Substances for Optimizing Gut Health in Poultry. Microorganisms 2022, 10, 395. [Google Scholar] [CrossRef] [PubMed]
- Hajati, H. Application of Organic Acids in Poultry Nutrition. Int. J. Avian Wildl. Biol. 2018, 3, 324–329. [Google Scholar] [CrossRef]
- Scicutella, F.; Mannelli, F.; Daghio, M.; Viti, C.; Buccioni, A. Polyphenols and Organic Acids as Alternatives to Antimicrobials in Poultry Rearing: A Review. Antibiotics 2021, 10, 1010. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.H.; Iqbal, J. Recent Advances in the Role of Organic Acids in Poultry Nutrition. J. Appl. Anim. Res. 2016, 44, 359–369. [Google Scholar] [CrossRef]
- Mohammadi Gheisar, M.; Hosseindoust, A.; Kim, I.H. Evaluating the Effect of Microencapsulated Blends of Organic Acids and Essential Oils in Broiler Chickens Diet. J. Appl. Poult. Res. 2015, 24, 511–519. [Google Scholar] [CrossRef]
- Liao, H.; Wu, X.P.; Zhang, K.Y.; Ding, X.M.; Bai, S.P.; Wang, J.P.; Zeng, Q.F. The Effect of Citric Acid Acidification of Drinking Water on Growth Performance, Cecal pH, and Cecal Microflora of Meat Duck. Livest. Sci. 2018, 209, 54–59. [Google Scholar] [CrossRef]
- Abdelfattah Hassan, A.; El-Ghazali, H. Effects of Diet’s Acidifying Additives on the Intestinal His- Tomorphology in Ducks. Slov. Vet. Res. 2019, 56, 219–228. [Google Scholar] [CrossRef]
- Haq, Z.; Rastogi, A.; Sharma, R.K.; Khan, N. Advances in Role of Organic Acids in Poultry Nutrition: A Review. J. Appl. Nat. Sci. 2017, 9, 2152–2157. [Google Scholar] [CrossRef]
- Szott, V.; Peh, E.; Friese, A.; Roesler, U.; Kehrenberg, C.; Ploetz, M.; Kittler, S. Antimicrobial Effect of a Drinking Water Additive Comprising Four Organic Acids on Campylobacter Load in Broilers and Monitoring of Bacterial Susceptibility. Poult. Sci. 2022, 101, 102209. [Google Scholar] [CrossRef]
- Bauer, B.W.; Radovanovic, A.; Willson, N.-L.; Bajagai, Y.S.; Hao Van, T.T.; Moore, R.J.; Stanley, D. Oregano: A Potential Prophylactic Treatment for the Intestinal Microbiota. Heliyon 2019, 5, e02625. [Google Scholar] [CrossRef]
- Ertas, O.N.; Guler, T.; Çiftçi, M.; Dalkilic, B.; Simsek, U.G. The Effect of an Essential Oil Mix Derived from Oregano, Clove and Anise on Broiler Performance. Int. J. Poult. Sci. 2005, 4, 879–884. [Google Scholar] [CrossRef]
- Zhang, L.Y.; Peng, Q.Y.; Liu, Y.R.; Ma, Q.G.; Zhang, J.Y.; Guo, Y.P.; Xue, Z.; Zhao, L.H. Effects of Oregano Essential Oil as an Antibiotic Growth Promoter Alternative on Growth Performance, Antioxidant Status, and Intestinal Health of Broilers. Poult. Sci. 2021, 100, 101163. [Google Scholar] [CrossRef]
- Alagawany, M.; Abd El-Hack, M.E.; Farag, M.R.; Shaheen, H.M.; Abdel-Latif, M.A.; Noreldin, A.E.; Patra, A.K. The Usefulness of Oregano and Its Derivatives in Poultry Nutrition. Worlds Poult. Sci. J. 2018, 74, 463–474. [Google Scholar] [CrossRef]
- Bozkurt, M.; Bintaş, E.; Kırkan, Ş.; Akşit, H.; Küçükyılmaz, K.; Erbaş, G.; Çabuk, M.; Akşit, D.; Parın, U.; Ege, G.; et al. Comparative Evaluation of Dietary Supplementation with Mannan Oligosaccharide and Oregano Essential Oil in Forced Molted and Fully Fed Laying Hens between 82 and 106 Weeks of Age. Poult. Sci. 2016, 95, 2576–2591. [Google Scholar] [CrossRef]
- Abouelezz, K.; Abou-Hadied, M.; Yuan, J.; Elokil, A.A.; Wang, G.; Wang, S.; Wang, J.; Bian, G. Nutritional Impacts of Dietary Oregano and Enviva Essential Oils on the Performance, Gut Microbiota and Blood Biochemicals of Growing Ducks. Animal 2019, 13, 2216–2222. [Google Scholar] [CrossRef]
- Seidavi, A.; Tavakoli, M.; Asroosh, F.; Scanes, C.G.; Abd El-Hack, M.E.; Naiel, M.A.E.; Taha, A.E.; Aleya, L.; El-Tarabily, K.A.; Swelum, A.A. Antioxidant and Antimicrobial Activities of Phytonutrients as Antibiotic Substitutes in Poultry Feed. Environ. Sci. Pollut. Res. 2022, 29, 5006–5031. [Google Scholar] [CrossRef] [PubMed]
- Brenes, A.; Roura, E. Essential Oils in Poultry Nutrition: Main Effects and Modes of Action. Anim. Feed Sci. Technol. 2010, 158, 1–14. [Google Scholar] [CrossRef]
- Gadde, U.; Kim, W.H.; Oh, S.T.; Lillehoj, H.S. Alternatives to Antibiotics for Maximizing Growth Performance and Feed Efficiency in Poultry: A Review. Anim. Health Res. Rev. 2017, 18, 26–45. [Google Scholar] [CrossRef]
- Mnisi, C.M.; Mlambo, V.; Gila, A.; Matabane, A.N.; Mthiyane, D.M.N.; Kumanda, C.; Manyeula, F.; Gajana, C.S. Antioxidant and Antimicrobial Properties of Selected Phytogenics for Sustainable Poultry Production. Appl. Sci. 2023, 13, 99. [Google Scholar] [CrossRef]
- Archer, G.S.; Shivaprasad, H.L.; Mench, J.A. Effect of Providing Light during Incubation on the Health, Productivity, and Behavior of Broiler Chickens. Poult. Sci. 2009, 88, 29–37. [Google Scholar] [CrossRef]
- Nelson, J.R.; Archer, G.S. Effect of Yeast Fermentate Supplementation on Intestinal Health and Plasma Biochemistry in Heat-Stressed Pekin Ducks. Animals 2019, 9, 790. [Google Scholar] [CrossRef]
- House, G. Evaluation of Light-Emitting Diode Spectral Output and Photoperiod Duration on Pekin Duck Performance, Stress, and Welfare. Ph.D. Thesis, Texas A&M University, College Station, TX, USA, August 2022. [Google Scholar]
- Knierim, U.; Van Dongen, S.; Forkman, B.; Tuyttens, F.A.M.; Špinka, M.; Campo, J.L.; Weissengruber, G.E. Fluctuating Asymmetry as an Animal Welfare Indicator—A Review of Methodology and Validity. Physiol. Behav. 2007, 92, 398–421. [Google Scholar] [CrossRef]
- Sommer, C. Ecotoxicology and Developmental Stability as an in Situ Monitor of Adaptation. Ambio 1996, 25, 374–376. [Google Scholar]
- Prieto, M.T.; Campo, J.L.; Santiago-Moreno, J. Relationship among Fluctuating Asymmetry, Morphological Traits, and Sperm Quality in Layers. Poult. Sci. 2011, 90, 2845–2854. [Google Scholar] [CrossRef]
- Leung, B.; Forbes, M.R.; Houle, D. Fluctuating Asymmetry as a Bioindicator of Stress: Comparing Efficacy of Analyses Involving Multiple Traits. Am. Nat. 2000, 155, 101–115. [Google Scholar] [CrossRef]
- Bao, H.; Xue, Y.; Zhang, Y.; Tu, F.; Wang, R.; Cao, Y.; Lin, Y. Encapsulated Essential Oils Improve the Growth Performance of Meat Ducks by Enhancing Intestinal Morphology, Barrier Function, Antioxidant Capacity and the Cecal Microbiota. Antioxidants 2023, 12, 253. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi Gheisar, M.; Zhao, P.; Kim, I.H. Addition of Phytogenic Blend in Different Nutrient Density Diets of Meat-Type Ducks. J. Appl. Anim. Res. 2018, 46, 854–859. [Google Scholar] [CrossRef]
- Ding, X.; Wu, X.; Zhang, K.; Bai, S.; Wang, J.; Peng, H.; Xuan, Y.; Su, Z.; Zeng, Q. Dietary Supplement of Essential Oil from Oregano Affects Growth Performance, Nutrient Utilization, Intestinal Morphology and Antioxidant Ability in Pekin Ducks. J. Anim. Physiol. Anim. Nutr. 2020, 104, 1067–1074. [Google Scholar] [CrossRef]
- Tugnoli, B.; Giovagnoni, G.; Piva, A.; Grilli, E. From Acidifiers to Intestinal Health Enhancers: How Organic Acids Can Improve Growth Efficiency of Pigs. Animals 2020, 10, 134. [Google Scholar] [CrossRef]
- Clemens, E.T.; Stevens, C.E.; Southworth, M. Sites of Organic Acid Production and Pattern of Digesta Movement in the Gastrointestinal Tract of Geese. J. Nutr. 1975, 105, 1341–1350. [Google Scholar] [CrossRef]
- Marín-Flamand, E.; Vázquez-Durán, A.; Méndez-Albores, A. Effect of Organic Acid Blends in Drinking Water on Growth Performance, Blood Constituents and Immune Response of Broiler Chickens. J. Poult. Sci. 2014, 51, 144–150. [Google Scholar] [CrossRef]
- Harvey, S.; Phillips, J.G.; Rees, A.; Hall, T.R. Stress and Adrenal Function. J. Exp. Zool. 1984, 232, 633–645. [Google Scholar] [CrossRef]
- Scanes, C.G. Biology of Stress in Poultry with Emphasis on Glucocorticoids and the Heterophil to Lymphocyte Ratio. Poult. Sci. 2016, 95, 2208–2215. [Google Scholar] [CrossRef]
- Dai, D.; Qi, G.; Wang, J.; Zhang, H.; Qiu, K.; Han, Y.; Wu, Y.; Wu, S. Dietary Organic Acids Ameliorate High Stocking Density Stress-Induced Intestinal Inflammation through the Restoration of Intestinal Microbiota in Broilers. J. Anim. Sci. Biotechnol. 2022, 13, 124. [Google Scholar] [CrossRef]
- Akaichi, A.; Jebali, A.; Benlarbi, M.; Mahjoub, T.; Kaboudi, K.; Chaouacha-Chekir, R.B.; Haouas, Z.; Boudhrioua, N. Effects of Humic Acid and Organic Acids Supplements on Performance, Meat Quality, Leukocyte Count, and Histopathological Changes in Spleen and Liver of Broiler Chickens. Res. Vet. Sci. 2022, 150, 179–188. [Google Scholar] [CrossRef]
- Luna, A.; Tarifa, M.F.; Fernandez, M.E.; Caliva, J.M.; Pellegrini, S.; Zygadlo, J.A.; Marin, R.H. Thymol, Alpha Tocopherol, and Ascorbyl Palmitate Supplementation as Growth Enhancers for Broiler Chickens. Poult. Sci. 2019, 98, 1012–1016. [Google Scholar] [CrossRef] [PubMed]
- Kuma, A.; Toghyani, M.; Kheravii, S.K.; Pineda, L.; Han, Y.; Swick, R.A.; Wu, S. Potential of blended organic acids to improve performance and health of broilers infected with necrotic enteritis. Anim. Nutr. 2021, 7, 440–449. [Google Scholar] [CrossRef]
- Michalczuk, M.; Holl, E.; Möddel, A.; Jóźwik, A.; Slósarz, J.; Bień, D.; Ząbek, K.; Konieczka, P. Phytogenic Ingredients from Hops and Organic Acids Improve Selected Indices of Welfare, Health Status Markers, and Bacteria Composition in the Caeca of Broiler Chickens. Animals 2021, 11, 3249. [Google Scholar] [CrossRef] [PubMed]
- Partanen, K.H.; Mroz, Z. Organic acids for performance enhancement in pig diets. Nutr. Res. Rev. 1999, 12, 117–145. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, E.; Madrid, J.; Garcia, V.; Orengo, J.; Megias, M.D. Influence of two plant extracts on broilers performance, digestibility, and digestive organ siz. Poult. Sci. 2004, 83, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Swiatkiewicz, S.; Arczewska-Wlosek, A. Bone Quality Characteristics and Performance in Broiler Chickens Fed Diets Supplemented with Organic Acids. Czech. J. Anim. Sci. 2012, 57, 193–205. [Google Scholar] [CrossRef]
Organic Acid Ingredients | OA, (%) 1 | Oregano Oil Active Ingredients (Proprietary Mixture) |
---|---|---|
Formic acid | 25–35 | Oregano oil |
Propionic acid | 5–15 | Cinnamon oil |
1,2,3-propanetriol, glycerol | 5–10 | Citric acid |
Castor oil, ethoxylated | 5–10 | Sodium chloride |
Cinnamaldehyde | 1–5 |
Treatment | Avg. Bird Weight (kg) | 14 D Avg. Bird Weight (kg) | 35 D Avg. Bird Weight (kg) | ADFI 1–15 D (g/d) | ADFI 15–35 D (g/d) | ADFI 1–35 D (g/d) | FCR 1–15 D | FCR 15–35 D | FCR 1–35 D |
---|---|---|---|---|---|---|---|---|---|
Control (1) | 0.06 | 0.81 | 3.21 b | 66.33 | 283.90 a | 174.13 a | 1.24 a | 1.66 a | 1.56 a |
Organic acid (2) | 0.05 | 0.82 | 3.52 a | 66.04 | 279.28 | 171.76 | 1.21 | 1.49 b | 1.43 b |
Oregano oils (3) | 0.05 | 0.80 | 3.36 a | 65.85 | 265.43 b | 165.51 b | 1.23 b | 1.50 b | 1.44 b |
p-value 1 vs. 2 | - | 0.32 | 0.001 | 0.85 | 0.53 | 0.58 | 0.4 | 0.0001 | 0.0001 |
p value 1 vs. 3 | - | 0.9 | 0.03 | 0.72 | 0.0001 | 0.006 | 0.003 | 0.0001 | 0.0001 |
Pooled SEM | 0.0005 | 0.004 | 0.04 | 0.52 | 2.83 | 1.54 | 0.01 | 0.02 | 0.02 |
Treatment | Mortality 15–35 D | Mortality w/Culls 15–35 D | Mortality 1–35 D | Mortality w/Culls 1–35 D |
---|---|---|---|---|
Control (1) | 2.38 | 2.38 | 2.38 | 2.38 |
Organic acid (2) | 0.79 | 1.59 | 0.79 | 1.59 |
Oregano oils (3) | 0.00 | 0.79 | 0.00 | 0.79 |
p-value 1 vs. 2 | 0.28 | 0.62 | 0.28 | 0.62 |
p-value 1 vs. 3 | 0.06 | 0.28 | 0.06 | 0.28 |
Pooled SEM | 0.50 | 0.58 | 0.50 | 0.58 |
Treatment | Villus Height (µm) | Crypt Depth (µm) | V/C Ratio |
---|---|---|---|
Control (1) | 343.99 b | 137.23 a | 1.13 b |
Organic acid (2) | 377.42 a | 122.20 b | 1.36 a |
Oregano oil (3) | 300.19 a | 119.33 b | 1.14 b |
p-value 1 vs. 2 | 0.016 | 0.036 | 0.014 |
p-value 1 vs. 3 | 0.001 | 0.019 | 0.931 |
Pooled SEM | 5.52 | 2.78 | 0.04 |
Treatment | Proventriculus | Jejunum | Ileum | Ceca |
---|---|---|---|---|
Control | 4.70 | 6.31 a | 6.74 | 6.05 a |
Organic acid | 4.80 | 6.14 b | 6.82 | 5.69 b |
p-value | 0.630 | 0.040 | 0.32 | 0.017 |
Pooled SEM | 0.10 | 0.04 | 0.04 | 0.08 |
Treatment | D 35 Total Plasma Corticosterone (pg/mL) | D 35 H/L Ratios | D 35 Asymmetry |
---|---|---|---|
Control (1) | 57,787 a | 0.47 a | 2.49 a |
Organic acid (2) | 22,423 b | 0.34 b | 1.99 b |
Oregano oil (3) | 21,269 b | 0.33 b | 1.98 b |
p-value 1 vs. 2 | 0.01 | 0.02 | 0.005 |
p-value 1 vs. 3 | 0.01 | 0.03 | 0.004 |
Pooled SEM | 5100.42 | 0.02 | 0.07 |
Treatment | D 35 Footpad Lesion Score | D 35 Tibia Breaking Strength (kg) | D 35 Tibia Ash Content (%) |
---|---|---|---|
Control (1) | 0.12 | 24.74 b | 57.46 |
Organic acid (2) | 0.11 | 27.47 a | 57.51 |
Oregano oil (3) | 0.08 | 24.270 | 57.14 |
p-value 1 vs. 2 | 0.374 | 0.017 | 0.945 |
p-value 1 vs. 3 | 0.165 | 0.705 | 0.723 |
Pooled SEM | 0.02 | 0.49 | 0.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rocha, J.J.; Archer, G.S. The Effect of Supplementation with Organic Acid and Oregano Oils in Drinking Water on Pekin Duck Growth and Welfare. Poultry 2024, 3, 95-106. https://doi.org/10.3390/poultry3020009
Rocha JJ, Archer GS. The Effect of Supplementation with Organic Acid and Oregano Oils in Drinking Water on Pekin Duck Growth and Welfare. Poultry. 2024; 3(2):95-106. https://doi.org/10.3390/poultry3020009
Chicago/Turabian StyleRocha, Jessica J., and Gregory S. Archer. 2024. "The Effect of Supplementation with Organic Acid and Oregano Oils in Drinking Water on Pekin Duck Growth and Welfare" Poultry 3, no. 2: 95-106. https://doi.org/10.3390/poultry3020009
APA StyleRocha, J. J., & Archer, G. S. (2024). The Effect of Supplementation with Organic Acid and Oregano Oils in Drinking Water on Pekin Duck Growth and Welfare. Poultry, 3(2), 95-106. https://doi.org/10.3390/poultry3020009