Efficiency of Utilization of Metabolizable Energy for Carcass Energy Retention in Broiler Chickens Fed Maize, Wheat or a Mixture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Laboratory Analysis
2.2. Bioassays
2.2.1. Apparent Metabolizable Energy
2.2.2. Carcass Energy Retention
- REf (MJ carcass) = REf 21d − REf 7d
- REp (MJ carcass) = REp 21d − REp 7d
- RE (MJ carcass) = [(REf 21d − REf 7d) + (REp 21d − REp 7d)]
- REf (MJ)—energy retained as carcass fat at 21 and 7d, respectively (39.12 MJ/kg)
- REp (MJ)—energy retained as carcass protein at 21 and 7d, respectively (23·6 MJ/kg)
- REc (MJ kg−1 cereal) = [(REf 90% − REf 50%) + (REp 90% − REp 50%)]/W
- REf 90%—energy retained as carcass fat in birds fed at 90% restriction (39.12 MJ/kg)
- REf 50%—energy retained as carcass protein in birds fed at 90% restriction (39.12 MJ/kg
- REp 90%—energy retained as carcass protein in birds fed at 90% restriction (23.6 MJ/kg)
- REp 50%—energy retained as carcass protein in birds fed at 50% restriction (23.6 MJ/kg)
- REc (MJ)—energy retained in carcass attributed to cereal only
- W—Amount (kg of dry matter) of the experimental cereal sample included in diets fed with 90% restriction
2.3. Statistical Analyzes
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alhotan, R.A. Commercial poultry feed formulation: Current status, challenges, and future expectations. J. World’s Poult. Sci. 2021, 77, 279–299. [Google Scholar] [CrossRef]
- Bailey, C.A. Precision poultry nutrition and feed formulation. In Animal Agriculture—Sustainability, Challenges and Innovations; Academic Press: Cambridge, MA, USA, 2020; pp. 367–378. [Google Scholar]
- Vieira, S.L.; Stefanello, C.; Sorbara, J.O.B. Formulating poultry diets based on their indigestible components. Poult. Sci. 2014, 93, 2411–2416. [Google Scholar] [CrossRef] [PubMed]
- Babatunde, O.O.; Adeola, O. Additivity of apparent and standardised ileal digestibility of phosphorus in corn and canola meal mixed diets; basal endogenous loss of phosphorus responses to phytase and age in broiler chickens. Br. Poult. Sci. 2021, 62, 244–250. [Google Scholar] [CrossRef]
- Stein, H.H.; Pedersen, C.; Wirt, A.R.; Bohlke, R.A. Additivity of Values for Apparent and Standardized Ileal Digestibility of Amino Acids in Mixed Diets Fed to Growing Pigs. Anim. Sci. J. 2005, 83, 2387–2395. [Google Scholar] [CrossRef] [PubMed]
- She, Y.; Wang, Q.; Stein, H.H.; Liu, L.; Li, D.; Zhang, S. Additivity of Values for Phosphorus Digestibility in Corn, Soybean Meal, and Canola Meal in Diets Fed to Growing Pigs. Asian-Australas J. Anim. Sci. 2018, 31, 1301–1307. [Google Scholar] [CrossRef] [PubMed]
- Cowieson, A.; Sorbara, J.O.; Pappenberger, G.; Abdollahi, M.R.; Roos, F.F.; Ravindran, V. Additivity of Apparent and Standardized Ileal Amino Acid Digestibility of Corn and Soybean Meal in Broiler Diets. Poult. Sci. 2019, 98, 3722–3728. [Google Scholar] [CrossRef] [PubMed]
- Babatunde, O.O.; Osho, S.O.; Park, C.S.; Adeola, O. Additivity of Apparent and Standardized Ileal Digestibility of Phosphorus in Mixed Diets Containing Corn and Soybean Meal Fed to Broiler Chickens. Poult. Sci. 2020, 99, 6907–6913. [Google Scholar] [CrossRef] [PubMed]
- Olukosi, O.A.; Pilevar, M.; Ajao, A.M.; Veluri, S.; Lin, Y. Determination of standardised ileal digestibility of amino acids in high-fibre feedstuffs and additivity of apparent and standardised ileal amino acids digestibility of diets containing mixtures of maize, sorghum, and soybean meal. Br. Poult. Sci. 2023, 64, 409–418. [Google Scholar] [CrossRef] [PubMed]
- Hong, D.; Ragland, D.; Adeola, O. Additivity and associative effects of metabolizable energy and amino acid digestibility in barley and canola meal for white pekin ducks. Poult. Sci. 2001, 80, 1600–1606. [Google Scholar] [CrossRef]
- Noblet, J.; Wu, S.B.; Choct, M. Methodologies for energy evaluation of pig and poultry feeds: A review. Anim. Nutr. 2022, 8, 185–203. [Google Scholar] [CrossRef] [PubMed]
- Pirgozliev, V.R.; Rose, S.P. Net energy systems for poultry feeds: A quantitative review. World’s Poult. Sci. J. 1999, 55, 23–36. [Google Scholar] [CrossRef]
- Adekoya, A.; Park, C.S.; Adeola, O. Energy and Phosphorus Evaluation of Poultry Meal Fed to Broiler Chickens Using a Regression Method. Poult. Sci. 2021, 100, 101195. [Google Scholar] [CrossRef] [PubMed]
- Musigwa, S.; Morgan, N.; Swick, R.; Cozannet, P.; Wu, S.B. Optimisation of dietary energy utilisation for poultry–a literature review. World’s Poult. Sci. J. 2021, 77, 5–27. [Google Scholar] [CrossRef]
- Pirgozliev, V.; Bedford, M.R.; Acamovic, T.; Mares, P.; Allimehr, M. The effects of supplementary bacterial phytase on dietary energy and total tract amino acid digestibility when fed to young chickens. Br. Poult. Sci. 2011, 52, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Pirgozliev, V.; Bedford, M.R. Energy utilisation and growth performance of chicken fed diets containing graded levels of supplementary bacterial phytase. Br. J. Nutr. 2013, 109, 248–253. [Google Scholar] [CrossRef] [PubMed]
- Nehring, K.; Schiemann, R.; Hoffmann, L. A new system of energetic evaluation of food on the basis of net energy for fattening. In Proceedings of 4th Symposium on Energy Metabolism of Farm Animals, Warsaw, Poland, September 1967; Blaxter, K.L., Kielanowski, J., Thorbek, C., Eds.; Oriel Press: Warsaw, Poland, 1969; pp. 41–50. [Google Scholar]
- De Groote, G. A comparison of a new net energy system with the metabolisable energy system in broiler diet formulation, performance and profitability. Br. Poult. Sci. 1974, 15, 75–95. [Google Scholar] [CrossRef]
- Emmans, G.C. Effective energy: A concept of energy utilization applied across species. Br. J. Nutr. 1994, 71, 801–821. [Google Scholar] [CrossRef] [PubMed]
- Carré, B.; Lessire, M.; Juin, H. Prediction of the net energy value of broiler diets. Animal 2014, 8, 1395–1401. [Google Scholar] [CrossRef] [PubMed]
- Pirgozliev, V.; Rose, P.; Kettlewell, P.; Bedford, M.R. Efficiency of utilization of metabolizable energy for carcass energy retention in broiler chickens fed different wheat cultivars. Can. J. Anim. Sci. 2001, 81, 99–106. [Google Scholar] [CrossRef]
- Azhar, M.R.; Rose, S.P.; Mackenzie, A.M.; Mansbridge, S.C.; Bedford, M.R.; Lovegrove, A.; Pirgozliev, V.R. Wheat sample affects growth performance and the apparent metabolisable energy value for broiler chickens. Br. Poult. Sci. 2019, 60, 457–466. [Google Scholar] [CrossRef]
- Lim, C.; Poaty Ditengou, J.; Ryu, K.; Ku, J.; Park, M.; Whiting, I.M.; Pirgozliev, V. Effect of maize replacement with different triticale levels on layers production performance, egg quality, yolk fatty acid profile and blood parameters. J. Anim. Feed Sci. 2021, 30, 360–366. [Google Scholar] [CrossRef]
- Lasek, O.; Barteczko, J.; Barć, J.; Micek, P. Nutrient content of different wheat and maize varieties and their impact on metabolizable energy content and nitrogen utilization by broilers. Animals 2020, 10, 907. [Google Scholar] [CrossRef] [PubMed]
- Barteczko, J.; Augustyn, R.; Lasek, O.; Smulikowska, S. Chemical composition and nutritional value of different wheat cultivars for broiler chickens. J. Anim. Feed Sci. 2009, 18, 124–131. [Google Scholar] [CrossRef]
- Sauvant, D.; Perez, J.-M.; Tran, G. Tables of composition and nutritional value of feed materials. In Pigs, Poultry, Cattle, Sheep, Goats, Rabbits, Horses and Fish, 2nd ed.; Wageningen Academic Publishers: Wageningen, The Netherlands; INRA: Paris, France, 2004. [Google Scholar]
- Englyst, H.N.; Cumming, J.N. Improved method for measurement of dietary fiber as non-starch polysaccharides in plant food. J. Assoc. Off. Anal. Chem. 1988, 71, 808–814. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Li, L.; Ban, Z.; Guo, Y.; Yan, X.; Yang, H.; Nie, W. Determination of metabolisable and net energy contents of corn fed to Arbor Acres broilers and Beijing You chickens. J. Anim. Physiol. Anim. Nutr. 2023, 107, 671–679. [Google Scholar] [CrossRef] [PubMed]
- Ndlebe, L.; Tyler, N.C.; Ciacciariello, M. Effect of varying levels of dietary energy and protein on broiler performance: A review. Worlds Poult. Sci. J. 2023, 79, 449–465. [Google Scholar] [CrossRef]
- Kim, E.; Morgan, N.K.; Moss, A.F.; Li, L.; Ader, P.; Choct, M. The flow of non-starch polysaccharides along the gastrointestinal tract of broiler chickens fed either a wheat-or maize-based diet. Anim. Nutr. 2022, 9, 138–142. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.T.; Bedford, M.R.; Wu, S.B.; Morgan, N.K. Dietary soluble non-starch polysaccharide level influences performance, nutrient utilisation and disappearance of non-starch polysaccharides in broiler chickens. Animals 2022, 12, 547. [Google Scholar] [CrossRef] [PubMed]
- Han, G.P.; Kim, D.Y.; Kim, K.H.; Kim, J.H.; Kil, D.Y. Effect of dietary concentrations of metabolizable energy and neutral detergent fiber on productive performance, egg quality, fatty liver incidence, and hepatic fatty acid metabolism in aged laying hens. Poult. Sci. 2023, 102, 102497. [Google Scholar] [CrossRef] [PubMed]
- AOAC (Association of Official Analytical Chemists). Official Methods of Analysis, 15th ed.; Association of Official Analytical Chemist: Washington, DC, USA, 1990. [Google Scholar]
- McNab, J.M.; Blair, J.C. Modified assay for true and apparent metabolisable energy based on tube-feeding. Br. Poult. Sci. 1988, 29, 697–707. [Google Scholar] [CrossRef] [PubMed]
- Pirgozliev, V.; Acamovic, T.; Bedford, M.R. The effect of previous exposure to dietary microbial phytase on the endogenous excretions of energy, nitrogen and minerals from turkeys. Br. Poult. Sci. 2011, 52, 66–71. [Google Scholar] [CrossRef] [PubMed]
- NRC (Nutrient Requirements of Poultry). National Academy Press: Washington, DC, USA, 1994.
- Okumura, J.I.; Mori, S. Effect of deficiencies of single essential amino acids on nitrogen and energy utilisation in chicks. Br. Poult. Sci. 1979, 20, 421–429. [Google Scholar] [CrossRef] [PubMed]
- Dänicke, S.; Jeroch, H.; Simon, O.; Bedford, M.R. Interactions between dietary fat type and exogenous enzyme supplementation of broiler diets based on maize, wheat, triticale or barley. J. Anim. Feed Sci. 1999, 8, 467–483. [Google Scholar] [CrossRef]
- Pirgozliev, V.; Beccaccia, A.; Rose, S.P.; Bravo, D. Partitioning of dietary energy of chickens fed maize-or wheat-based diets with and without a commercial blend of phytogenic feed additives. J. Anim. Sci. 2015, 93, 1695–1702. [Google Scholar] [CrossRef] [PubMed]
- Zaefarian, F.; Romero, L.F.; Ravindran, V. Influence of a microbial phytase on the performance and the utilisation of energy, crude protein and fatty acids of young broilers fed on phosphorus adequate maize- and wheat-based diets. Br. Poult. Sci. 2013, 54, 653–660. [Google Scholar] [CrossRef] [PubMed]
- Dale, N.M.; Fuller, H.L. Additivity of true metabolizable energy values as measured with roosters, broiler chicks and poults. Poult. Sci. 1980, 59, 1941–1942. [Google Scholar] [CrossRef] [PubMed]
- Amerah, A.M.; Ravindran, V.; Lentle, R.G. Influence of insoluble fibre and whole wheat inclusion on the performance, digestive tract development and ileal microbiota profile of broiler chickens. Br. Poult. Sci. 2009, 50, 366–375. [Google Scholar] [CrossRef] [PubMed]
- Whiting, I.M.; Pirgozliev, V.; Bedford, M.R. The effect of different wheat varieties and exogenous xylanase on bird performance and utilization of energy and nutrients. Poult. Sci. 2023, 102, 102817. [Google Scholar] [CrossRef] [PubMed]
- Annison, G. Relationship between the levels of non-starch polysaccharides and apparent metabolisable energy of wheat assayed in broiler chickens. J. Agric. Food Chem. 1991, 39, 1252–1256. [Google Scholar] [CrossRef]
- Bedford, M.R.; Classen, H.L. Reduction of intestinal viscosity through manipulation of dietary rye and pentosanase concentration is affected through changes in the carbohydrate composition of the intestinal aqueous phase and results in improved growth rate and food conversion efficiency of broiler chicks. J. Nutr. 1992, 122, 560–569. [Google Scholar] [PubMed]
- Van Krimpen, M.M.; Kwakkel, R.P.; Van Der Peet-Schwering, C.M.C.; Den Hartog, L.A.; Verstegen, M.W.A. Effects of dietary energy concentration, nonstarch polysaccharide concentration, and particle sizes of nonstarch polysaccharides on digesta mean retention time and gut development in laying hens. Br. Poult. Sci. 2011, 52, 730–741. [Google Scholar] [CrossRef] [PubMed]
- Choct, M.; Hughes, R.J.; Wang, J.; Bedford, M.R.; Morgan, A.J.; Annison, G. Increased small intestinal fermentation is partly responsible for the anti-nutritive activity of non-starch polysaccharides in chickens. Br. Poult. Sci. 1996, 37, 609–621. [Google Scholar] [CrossRef] [PubMed]
- Feighner, S.D.; Dashkevicz, M.P. Subtherapeutic levels of antibiotics in poultry feeds and their effects on weight gain, feed efficiency and bacterial cholytaurine hydrolase activity. Appl. Environ. Microbiol. 1987, 53, 331–336. [Google Scholar] [CrossRef] [PubMed]
- Smits, C.H.M.; Veldman, A.; Verkade, H.J.; Beynen, A.C. The inhibitory effect of carbomethylcellulose with high viscosity on lipid absorption in broiler chickens coincides with reduced bile salt concentration and raised microbial number of the small intestine. Poult. Sci. 1998, 77, 1534–1539. [Google Scholar] [CrossRef] [PubMed]
- Muramatsu, T.; Nakajima, S.; Okumura, J. Modification of energy metabolism by the presence of the gut microflora in the chicken. Br. J. Nutr. 1994, 71, 709–717. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Pirgozliev, V.R.; Rose, S.P.; Woods, S.; Yang, H.M.; Wang, Z.Y.; Bedford, M.R. Effect of age on the relationship between metabolizable energy and digestible energy for broiler chickens. Poult. Sci. 2020, 99, 320–330. [Google Scholar] [CrossRef] [PubMed]
- Choct, M.; Annison, G. Anti-nutritive effect of wheat pentosans in broiler chickens: Roles of viscosity and gut microflora. Br. Poult. Sci. 1992, 33, 821–834. [Google Scholar] [CrossRef] [PubMed]
- Pirgozliev, V.; Rose, S.P.; Pellny, T.; Amerah, A.M.; Wickramasinghe, M.; Ulker, M.; Rakszegi, M.; Bedo, Z.; Shewry, P.R.; Lovegrove, A. Energy utilization and growth performance of chickens fed novel wheat inbred lines selected for different pentosan levels with and without xylanase supplementation. Poult. Sci. 2015, 94, 232–239. [Google Scholar] [CrossRef] [PubMed]
- Adekoya, A.A.; Adeola, O. Evaluation of the utilisation of energy and phosphorus in field peas fed to broiler chickens. Br. Poult. Sci. 2023, 64, 726–732. [Google Scholar] [CrossRef] [PubMed]
- MacLeod, M.G. Fat deposition and heat production as response to surplus dietary energy in fowls given a wide range of metabolizable energy: Protein ratios. Br. Poult. Sci. 1991, 32, 1097–1108. [Google Scholar] [CrossRef]
- Percie du Sert, N.; Hurst, V.; Ahluwalia, A.; Alam, S.; Avey, M.T.; Baker, M.; Browne, W.J.; Clark, A.; Cuthill, I.C.; Dirnagl, U.; et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol. 2020, 18, e3000411. [Google Scholar]
Ingredients (g/kg) | Control |
---|---|
Wheat | 300 |
Maize gluten meal | 33.3 |
Hulless soya bean meal | 83.3 |
Full fat soya | 433.3 |
Fish meal | 83.3 |
Lysine HCl | 3.33 |
Methionine | 5.0 |
Dicalcium phosphate | 25.0 |
Vitamin mineral premix 1 | 33.33 |
Total | 1000 |
Calculated analysis | |
AME MJ kg−1 DM | 13.2 |
Crude protein g kg−1 DM | 342 |
Lysine g kg−1 DM | 23.1 |
Methionine + cystine g kg−1 DM | 15.1 |
Calcium g kg−1 DM | 19.3 |
Phoshorus g kg−1 DM | 12.2 |
Sodium g kg−1 DM | 4.0 |
Laboratory Measurements | Wheat | Maize |
---|---|---|
Dry matter (g/kg−1) | 855 | 857 |
Crude protein (N × 6.25) (g/kg−1 DM) | 128 | 84 |
Crude fat (g/kg−1 DM) | 21 | 33 |
Gross energy (MJ/kg−1 DM) | 18.41 | 18.60 |
Total Non-Starch Polysaccharides (g/kg−1 DM) | 106 | 82 |
Suluble Non-Starch Polysaccharides (g/kg−1 DM) | 35 | 11 |
Viscosity (cP) | 3.2 | 1.7 |
Item | Wheat | Cereal Mixtures | Maize | SEM | Probability of Differences | |||
---|---|---|---|---|---|---|---|---|
0.67 Wheat 0.33 Maize | 0.33 Wheat 0.67 Maize | p-Value | L | Q | ||||
AME | 13.39 | 13.73 | 14.25 | 14.77 | 0.253 | 0.007 | <0.001 | 0.731 |
Item | Basal Feed | Basal + Wheat | Basal + 0.67 Wheat + 0.33 Maize | Basal + 0.33 Wheat + 0.67 Maize | Basal + Maize | SEM | p-Value * |
---|---|---|---|---|---|---|---|
Feed allocation | 50% restrict | 90% restrict | 90% restrict | 90% restrict | 90% restrict | - | - |
Basal feed intake of bird (kg of DM bird−1) | 0.420 | 0.420 | 0.420 | 0.420 | 0.420 | - | - |
Test cereal intake of bird (kg of DM bird−1) | - | 0.320 | 0.320 | 0.320 | 0.320 | - | - |
AME intake from test cereals (kg of DM bird−1) | - | 4.28 | 4.39 | 4.56 | 4.73 | - | - |
Live weight of bird at 7d (kg bird−1) | 0.150 | 0.150 | 0.153 | 0.147 | 0.145 | 0.0041 | 0.752 |
Carcass GE at 7d old (MJ kg−1 DM) | 0.97 | 0.98 | 0.99 | 0.95 | 0.94 | 0.027 | 0.752 |
Live weight of bird at 21d (kg bird−1) | 0.393 | 0.605 | 0.609 | 0.604 | 0.612 | 0.0045 | 0.074 |
Carcass GE at 21d old (MJ kg−1 DM) | 21.10 | 24.04 | 24.28 | 24.54 | 24.86 | 0.107 | 0.074 |
Total carcass dry matter (g/g) | 0.100 | 0.174 | 0.179 | 0.181 | 0.185 | 0.0015 | 0.276 |
Total carcass fat at 21d old (g bird−1) | 2.12 | 4.19 | 4.34 | 4.46 | 4.60 | 0.045 | 0.131 |
Total carcass protein at 21d old (g bird−1) | 73.2 | 105.4 | 103.8 | 104.2 | 102.2 | 0.922 | 0.321 |
Item | Wheat | Cereal Mixture | Maize | SEM | Probability of Differences | |||
---|---|---|---|---|---|---|---|---|
0.67 Wheat 0.33 Maize | 0.33 Wheat 0.67 Maize | p-Value | L | Q | ||||
Carcass fat from cereals (g bird−1) | 32.7 | 38.6 | 40.4 | 44.1 | 0.11 | <0.001 | <0.001 | 0.320 |
Carcass GE from fat (MJ) | 1.28 | 1.51 | 1.58 | 1.72 | 0.043 | <0.001 | <0.001 | 0.320 |
Carcass protein from cereals (g bird−1) | 32.2 | 30.6 | 31.0 | 29.0 | 0.92 | 0.121 | 0.032 | 0.793 |
Carcass GE from protein (MJ) | 0.76 | 0.72 | 0.73 | 0.68 | 0.022 | 0.121 | 0.032 | 0.793 |
Carcass GE from fat and protein (MJ) | 2.04 | 2.23 | 2.31 | 2.41 | 0.052 | <0.001 | <0.001 | 0.353 |
RE (MJ kg−1 DM) | 7.45 | 8.15 | 8.44 | 8.79 | 0.189 | <0.001 | <0.001 | 0.353 |
Kre | 0.564 | 0.589 | 0.598 | 0.612 | 0.012 | 0.060 | 0.009 | 0.610 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pirgozliev, V.R.; Hammandy, M.H.; Mansbridge, S.C.; Whiting, I.M.; Rose, S.P. Efficiency of Utilization of Metabolizable Energy for Carcass Energy Retention in Broiler Chickens Fed Maize, Wheat or a Mixture. Poultry 2024, 3, 85-94. https://doi.org/10.3390/poultry3020008
Pirgozliev VR, Hammandy MH, Mansbridge SC, Whiting IM, Rose SP. Efficiency of Utilization of Metabolizable Energy for Carcass Energy Retention in Broiler Chickens Fed Maize, Wheat or a Mixture. Poultry. 2024; 3(2):85-94. https://doi.org/10.3390/poultry3020008
Chicago/Turabian StylePirgozliev, Vasil Radoslavov, Muhammad Hassan Hammandy, Stephen Charles Mansbridge, Isobel Margaret Whiting, and Stephen Paul Rose. 2024. "Efficiency of Utilization of Metabolizable Energy for Carcass Energy Retention in Broiler Chickens Fed Maize, Wheat or a Mixture" Poultry 3, no. 2: 85-94. https://doi.org/10.3390/poultry3020008
APA StylePirgozliev, V. R., Hammandy, M. H., Mansbridge, S. C., Whiting, I. M., & Rose, S. P. (2024). Efficiency of Utilization of Metabolizable Energy for Carcass Energy Retention in Broiler Chickens Fed Maize, Wheat or a Mixture. Poultry, 3(2), 85-94. https://doi.org/10.3390/poultry3020008