Black Soldier Meal in Feed Could Adversely Affect Organic Broiler Meat Quality When Used for the Total or Half Replacement of Diet Proteins
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals, Management, and Feed
2.2. Sample Collection and Analysis
2.3. Statistical Analysis
3. Results
3.1. Animal Performance
3.2. Animal Welfare
3.3. Fatty Acid Composition of BSL Meal
3.3.1. Fatty Acids in the Thigh
3.3.2. Fatty Acids in the Breast
3.4. Nutritonal Indeces
3.4.1. Thigh
3.4.2. Breast
4. Discussion
4.1. Growth Performances
4.2. Fatty Acids in BSL Meal
4.3. Fatty Acid and Meat Quality
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dei, H.K. Soybean as a Feed Ingredient for Livestock and Poultry; IntechOpen: London, UK, 2011. [Google Scholar]
- Jia, F.; Peng, S.; Green, J.; Koh, L.; Chen, X. Soybean Supply Chain Management and Sustainability: A Systematic Literature Review. J. Clean. Prod. 2020, 255, 120254. [Google Scholar] [CrossRef]
- Román, A.A. EPRS|European Parliamentary Research Service; European Union: Brussels, Belgium, 2020. [Google Scholar]
- Parolini, M.; Ganzaroli, A.; Bacenetti, J. Earthworm as an Alternative Protein Source in Poultry and Fish Farming: Current Applications and Future Perspectives. Sci. Total Environ. 2020, 734, 139460. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Taethaisong, N.; Meethip, W.; Surakhunthod, J.; Sinpru, B.; Sroichak, T.; Archa, P.; Thongpea, S.; Paengkoum, S.; Purba, R.A.P.; et al. Nutritional Composition of Black Soldier Fly Larvae (Hermetia Illucens L.) and Its Potential Uses as Alternative Protein Sources in Animal Diets: A Review. Insects 2022, 13, 831. [Google Scholar] [CrossRef]
- Veldkamp, T.; Dong, L.; Paul, A.; Govers, C. Bioactive Properties of Insect Products for Monogastric Animals—A Review. J. Insects Food Feed 2022, 8, 1027–1040. [Google Scholar] [CrossRef]
- Dabbou, S.; Gai, F.; Biasato, I.; Capucchio, M.T.; Biasibetti, E.; Dezzutto, D.; Meneguz, M.; Plachà, I.; Gasco, L.; Schiavone, A. Black Soldier Fly Defatted Meal as a Dietary Protein Source for Broiler Chickens: Effects on Growth Performance, Blood Traits, Gut Morphology and Histological Features. J. Anim. Sci. Biotechnol. 2018, 9, 49. [Google Scholar] [CrossRef] [PubMed]
- Schiavone, A.; Dabbou, S.; De Marco, M.; Cullere, M.; Biasato, I.; Biasibetti, E.; Capucchio, M.T.; Bergagna, S.; Dezzutto, D.; Meneguz, M.; et al. Black Soldier Fly Larva Fat Inclusion in Finisher Broiler Chicken Diet as an Alternative Fat Source. Animal 2018, 12, 2032–2039. [Google Scholar] [CrossRef]
- Murawska, D.; Daszkiewicz, T.; Sobotka, W.; Gesek, M.; Witkowska, D.; Matusevičius, P.; Bakuła, T. Partial and Total Replacement of Soybean Meal with Full-Fat Black Soldier Fly (Hermetia Illucens L.) Larvae Meal in Broiler Chicken Diets: Impact on Growth Performance, Carcass Quality and Meat Quality. Animals 2021, 11, 2715. [Google Scholar] [CrossRef]
- van Huis, A. Edible Insects: Future Prospects for Food and Feed Security; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013; ISBN 9789251075951. [Google Scholar]
- Makkar, H.P.S.; Tran, G.; Heuzé, V.; Ankers, P. State-of-the-Art on Use of Insects as Animal Feed. Anim. Feed Sci. Technol. 2014, 197, 1–33. [Google Scholar] [CrossRef]
- Nogales-Mérida, S.; Gobbi, P.; Józefiak, D.; Mazurkiewicz, J.; Dudek, K.; Rawski, M.; Kierończyk, B.; Józefiak, A. Insect Meals in Fish Nutrition. Rev. Aquac. 2019, 11, 1080–1103. [Google Scholar] [CrossRef]
- Ewald, N.; Vidakovic, A.; Langeland, M.; Kiessling, A.; Sampels, S.; Lalander, C. Fatty Acid Composition of Black Soldier Fly Larvae (Hermetia Illucens)—Possibilities and Limitations for Modification through Diet. Waste Manag. 2020, 102, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Marono, S.; Piccolo, G.; Loponte, R.; Di Meo, C.; Attia, Y.A.; Nizza, A.; Bovera, F. In Vitro Crude Protein Digestibility of Tenebrio Molitor and Hermetia Illucens Insect Meals and Its Correlation with Chemical Composition Traits. Ital. J. Anim. Sci. 2015, 14, 3889. [Google Scholar] [CrossRef]
- Leiber, F.; Gelencsér, T.; Stamer, A.; Amsler, Z.; Wohlfahrt, J.; Früh, B.; Maurer, V. Insect and Legume-Based Protein Sources to Replace Soybean Cake in an Organic Broiler Diet: Effects on Growth Performance and Physical Meat Quality. Renew. Agric. Food Syst. 2015, 32, 21–27. [Google Scholar] [CrossRef]
- de Souza Vilela, J.; Alvarenga, T.I.R.C.; Andrew, N.R.; McPhee, M.; Kolakshyapati, M.; Hopkins, D.L.; Ruhnke, I. Technological Quality, Amino Acid and Fatty Acid Profile of Broiler Meat Enhanced by Dietary Inclusion of Black Soldier Fly Larvae. Foods 2021, 10, 297. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.; Kim, H.R.; Lee, S.; Baek, Y.-C.; Jeong, J.Y.; Bang, H.T.; Ji, S.Y.; Park, S.H. Effects of Dietary Inclusion Level of Microwave-dried and Press-defatted Black Soldier Fly (Hermetia Illucens) Larvae Meal on Carcass Traits and Meat Quality in Broilers. Animals 2021, 11, 665. [Google Scholar] [CrossRef] [PubMed]
- Heuel, M.; Sandrock, C.; Leiber, F.; Mathys, A.; Gold, M.; Zurbrüegg, C.; Gangnat, I.D.M.; Kreuzer, M.; Terranova, M. Black Soldier Fly Larvae Meal and Fat as a Replacement for Soybeans in Organic Broiler Diets: Effects on Performance, Body N Retention, Carcase and Meat Quality. Br. Poult. Sci. 2022, 63, 650–661. [Google Scholar] [CrossRef] [PubMed]
- Facey, H.; Kithama, M.; Mohammadigheisar, M.; Huber, L.-A.; Shoveller, A.K.; Kiarie, E.G. Complete Replacement of Soybean Meal with Black Soldier Fly Larvae Meal in Feeding Program for Broiler Chickens from Placement through to 49 Days of Age Reduced Growth Performance and Altered Organs Morphology. Poult. Sci. 2023, 102, 102293. [Google Scholar] [CrossRef] [PubMed]
- Schiavone, A.; Dabbou, S.; Petracci, M.; Zampiga, M.; Sirri, F.; Biasato, I.; Gai, F.; Gasco, L. Black Soldier Fly Defatted Meal as a Dietary Protein Source for Broiler Chickens: Effects on Carcass Traits, Breast Meat Quality and Safety. Animal 2019, 13, 2397–2405. [Google Scholar] [CrossRef] [PubMed]
- Schiavone, A.; De Marco, M.; Martínez, S.; Dabbou, S.; Renna, M.; Madrid, J.; Hernandez, F.; Rotolo, L.; Costa, P.; Gai, F.; et al. Nutritional Value of a Partially Defatted and a Highly Defatted Black Soldier Fly Larvae (Hermetia Illucens L.) Meal for Broiler Chickens: Apparent Nutrient Digestibility, Apparent Metabolizable Energy and Apparent Ileal Amino Acid Digestibility. J. Anim. Sci. Biotechnol. 2017, 8, 51. [Google Scholar] [CrossRef]
- Schiavone, A.; Cullere, M.; De Marco, M.; Meneguz, M.; Biasato, I.; Bergagna, S.; Dezzutto, D.; Gai, F.; Dabbou, S.; Gasco, L.; et al. Partial or Total Replacement of Soybean Oil by Black Soldier Fly Larvae (Hermetia Illucens L.) Fat in Broiler Diets: Effect on Growth Performances, Feed-Choice, Blood Traits, Carcass Characteristics and Meat Quality. Ital. J. Anim. Sci. 2017, 16, 93–100. [Google Scholar] [CrossRef]
- Hoc, B.; Genva, M.; Fauconnier, M.-L.; Lognay, G.; Francis, F.; Caparros Megido, R. About Lipid Metabolism in Hermetia Illucens (L. 1758): On the Origin of Fatty Acids in Prepupae. Sci. Rep. 2020, 10, 11916. [Google Scholar] [CrossRef]
- Dalle Zotte, A. Do Insects as Feed Ingredient Affect Meat Quality? Theory Pract. Meat Process. 2021, 6, 200–209. [Google Scholar] [CrossRef]
- Zhu, Z.; Rehman, K.U.; Yu, Y.; Liu, X.; Wang, H.; Tomberlin, J.K.; Sze, S.-H.; Cai, M.; Zhang, J.; Yu, Z.; et al. De Novo Transcriptome Sequencing and Analysis Revealed the Molecular Basis of Rapid Fat Accumulation by Black Soldier Fly (Hermetia Illucens L.) for Development of Insectival Biodiesel. Biotechnol. Biofuels 2019, 12, 194. [Google Scholar] [CrossRef] [PubMed]
- Giannetto, A.; Oliva, S.; Ceccon Lanes, C.F.; de Araújo Pedron, F.; Savastano, D.; Baviera, C.; Parrino, V.; Lo Paro, G.; Spanò, N.C.; Cappello, T.; et al. Hermetia Illucens (Diptera: Stratiomydae) Larvae and Prepupae: Biomass Production, Fatty Acid Profile and Expression of Key Genes Involved in Lipid Metabolism. J. Biotechnol. 2020, 307, 44–54. [Google Scholar] [CrossRef] [PubMed]
- Skřivanová, E.; Marounek, M.; Benda, V.V.S.C.; Březina, P. Susceptibility of Escherichia coli, Salmonella sp and Clostridium perfringens to organic acids and monolaurin. Veterinární Medicína 2006, 51, 81–88. [Google Scholar] [CrossRef]
- Kim, S.A.; Rhee, M.S. Marked Synergistic Bactericidal Effects and Mode of Action of Medium-Chain Fatty Acids in Combination with Organic Acids against Escherichia Coli O157: H7. Appl. Environ. Microbiol. 2013, 79, 6552–6560. [Google Scholar] [CrossRef] [PubMed]
- Cullere, M.; Tasoniero, G.; Giaccone, V.; Acuti, G.; Marangon, A.; Dalle Zotte, A. Black Soldier Fly as Dietary Protein Source for Broiler Quails: Meat Proximate Composition, Fatty Acid and Amino Acid Profile, Oxidative Status and Sensory Traits. Animal 2018, 12, 640–647. [Google Scholar] [CrossRef]
- Kim, Y.B.; Kim, D.-H.; Jeong, S.-B.; Lee, J.-W.; Kim, T.-H.; Lee, H.-G.; Lee, K.-W. Black Soldier Fly Larvae Oil as an Alternative Fat Source in Broiler Nutrition. Poult. Sci. 2020, 99, 3133–3143. [Google Scholar] [CrossRef]
- Popova, T.L.; Petkov, E.; Ignatova, M. Effect of Black Soldier Fly. (Hermetia illucens) Meals on the Meat Quality in Broilers. Agric. Food Sci. 2020, 29, 177–188. [Google Scholar] [CrossRef]
- EC. EU Imports of Organic Agri-Food Products, Key Developments in 2022, July 2023; European Commission, DG Agriculture and Rural Development: Brussels, Belgium, 2023; Available online: https://agriculture.ec.europa.eu/system/files/2023-07/analytical-brief-2-eu-organic-imports-2022_en.pdf (accessed on 1 November 2023).
- Guarino Amato, M.; Castellini, C. Adaptability Challenges for Organic Broiler Chickens: A Commentary. Animals 2022, 12, 1354. [Google Scholar] [CrossRef]
- Folch, J.; Mark, L.; Gerald, H.; Sloane, S. A simple method for the isolation and purification of total lipids from animal tissues. J. Boil. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Failla, S.; Buttazzoni, L.; Meo Zilio, D.; Contò, M.; Renzi, G.; Castellini, C.; Guarino Amato, M. An index to measure the activity attitude of broilers in extensive system. Poult. Sci. 2021, 100, 101279. [Google Scholar] [CrossRef] [PubMed]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary Heart Disease: Seven Dietary Factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef] [PubMed]
- Santos-Silva, J.; Bessa, R.; Santos-Silvã, F.; Silvã, S. Effect of Genotype, Feeding System and Slaughter Weight. on the Quality of Light. Lambs II. Fatty Acid. Composition of Meat. Livest. Prod. Sci. 2002, 77, 187–194. [Google Scholar] [CrossRef]
- Mierliţă, D. Effects of Diets Containing Hemp Seeds or Hemp Cake on Fatty Acid Composition and Oxidative Stability of Sheep Milk. S. Afr. J. Anim. Sci. 2018, 48, 504–515. [Google Scholar] [CrossRef]
- Chen, S.; Bobe, G.; Zimmerman, S.; Hammond, E.G.; Luhman, C.M.; Boylston, T.D.; Freeman, A.E.; Beitz, D.C. Physical and Sensory Properties of Dairy Products from Cows with Various Milk Fatty Acid Compositions. J. Agric. Food Chem. 2004, 52, 3422–3428. [Google Scholar] [CrossRef] [PubMed]
- Logue, J.A.; de Vries, A.L.; Fodor, E.; Cossins, A.R. Lipid compositional correlates of temperature-adaptive interspecific differences in membrane physical structure. J. Exp. Biol. 2000, 203, 2105–2115. [Google Scholar] [CrossRef]
- Krajnović-Ozretic, M.; Najdek, M.; Ozretić, B. Fatty Acids in Liver and Muscle of Farmed and Wild Sea Bass (Dicentrarchus labrax L.). Comp. Biochem. Physiol. Part A Physiol. 1994, 109, 611–617. [Google Scholar] [CrossRef]
- Altmann, B.A.; Geisler, S.; Morthorst, F.; Angeli, S.; Bortolini, S.; Gauly, M.; Hummel, J.; Sünder, A.; Mörlein, D.; Traulsen, I.; et al. Animal Performance and Meat Quality of Two Slow-Growing Chicken Genotypes Fed Insects Reared on Municipal Organic Waste. J. Insects Food Feed 2023, 9, 1445–1459. [Google Scholar] [CrossRef]
- Pieterse, E.; Erasmus, S.W.; Uushona, T.; Hoffman, L.C. Black Soldier Fly (Hermetia Illucens) Pre-Pupae Meal as a Dietary Protein Source for Broiler Production Ensures a Tasty Chicken with Standard Meat Quality for Every Pot. J. Sci. Food Agric. 2019, 99, 893–903. [Google Scholar] [CrossRef]
- Cullere, M.; Tasoniero, G.; Giaccone, V.; Miotti-Scapin, R.; Claeys, E.; De Smet, S.; Dalle Zotte, A. Black Soldier Fly as Dietary Protein Source for Broiler Quails: Apparent Digestibility, Excreta Microbial Load, Feed Choice, Performance, Carcass and Meat Traits. Animal 2016, 10, 1923–1930. [Google Scholar] [CrossRef]
- Islam, M.M.; Yang, C.-J. Efficacy of Mealworm and Super Mealworm Larvae Probiotics as an Alternative to Antibiotics Challenged Orally with Salmonella and E. coli Infection in Broiler Chicks. Poult. Sci. 2017, 96, 27–34. [Google Scholar] [CrossRef]
- Tabata, E.; Kashimura, A.; Wakita, S.; Ohno, M.; Sakaguchi, M.; Sugahara, Y.; Kino, Y.; Matoska, V.; Bauer, P.O.; Oyama, F. Gastric and Intestinal Proteases Resistance of Chicken Acidic Chitinase Nominates Chitin-Containing Organisms for Alternative Whole Edible Diets for Poultry. Sci. Rep. 2017, 7, 6662. [Google Scholar] [CrossRef]
- Fuso, A.; Barbi, S.; Macavei, L.I.; Luparelli, A.V.; Maistrello, L.; Montorsi, M.; Sforza, S.; Caligiani, A. Effect of the Rearing Substrate on Total Protein and Amino Acid Composition in Black Soldier Fly. Foods 2021, 10, 1773. [Google Scholar] [CrossRef]
- Eggink, K.M.; Lund, I.; Pedersen, P.B.; Hansen, B.W.; Dalsgaard, J. Biowaste and By-Products as Rearing Substrates for Black Soldier Fly (Hermetia Illucens) Larvae: Effects on Larval Body Composition and Performance. PLoS ONE 2022, 17, e0275213. [Google Scholar] [CrossRef]
- Liu, X.; Chen, X.; Wang, H.; Yang, Q.; Ur Rehman, K.; Li, W.; Cai, M.; Li, Q.; Mazza, L.; Zhang, J.; et al. Dynamic Changes of Nutrient Composition throughout the Entire Life Cycle of Black Soldier Fly. PLoS ONE 2017, 12, e0182601. [Google Scholar] [CrossRef]
- Seyedalmoosavi, M.M.; Dannenberger, D.; Pfuhl, R.; Görs, S.; Mielenz, M.; Maak, S.; Wolf, P.; Daş, G.; Metges, C.C. Lipid Metabolism, Fatty Acid Composition and Meat Quality in Broilers Supplemented with Increasing Levels of Defrosted Black Soldier Fly Larvae. J. Insects Food Feed 2022, 9, 583–598. [Google Scholar] [CrossRef]
- Li, X.; Dong, Y.; Sun, Q.; Tan, X.; You, C.; Huang, Y.; Zhou, M. Growth and Fatty Acid Composition of Black Soldier Fly Hermetia Illucens (Diptera: Stratiomyidae) Larvae Are Influenced by Dietary Fat Sources and Levels. Animals 2022, 12, 486. [Google Scholar] [CrossRef] [PubMed]
- Liland, N.S.; Biancarosa, I.; Araujo, P.; Biemans, D.; Bruckner, C.G.; Waagbø, R.; Torstensen, B.E.; Lock, E.-J. Modulation of Nutrient Composition of Black Soldier Fly (Hermetia Illucens) Larvae by Feeding Seaweed-Enriched Media. PLoS ONE 2017, 12, e0183188. [Google Scholar] [CrossRef]
- Renna, M.; Schiavone, A.; Gai, F.; Dabbou, S.; Lussiana, C.; Malfatto, V.; Prearo, M.; Capucchio, M.T.; Biasato, I.; Biasibetti, E.; et al. Evaluation of the Suitability of a Partially Defatted Black Soldier Fly (Hermetia Illucens, L.) Larvae Meal as Ingredient for Rainbow Trout (Oncorhynchus Mykiss Walbaum) Diets. J. Anim. Sci. Biotechnol. 2017, 8, 57. [Google Scholar] [CrossRef] [PubMed]
- de Souza-Vilela, J.; Andronicos, N.M.; Kolakshyapati, M.; Hilliar, M.; Sibanda, T.Z.; Andrew, N.R.; Swick, R.A.; Wilkinson, S.; Ruhnke, I. Black Soldier Fly Larvae in Broiler Diets Improve Broiler Performance and Modulate the Immune System. Anim. Nutr. 2021, 7, 695–706. [Google Scholar] [CrossRef] [PubMed]
- Daszkiewicz, T.; Murawska, D.; Kubiak, D.; Han, J. Chemical Composition and Fatty Acid Profile of the Pectoralis Major Muscle in Broiler Chickens Fed Diets with Full-Fat Black Soldier Fly (Hermetia Illucens) Larvae Meal. Animals 2022, 12, 464. [Google Scholar] [CrossRef]
- Mas, G.; Llavall, M.; Coll, D.; Roca, R.; Díaz, I.; Oliver, M.A.; Gispert, M.; Realini, C.E. Effect of an elevated monounsaturated fat diet on pork carcass and meat quality traits and tissue fatty acid composition from York-crossed barrows and gilts. Meat Sci. 2011, 89, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Rebolé, A.; Rodríguez, M.L.; Ortiz, L.T.; Alzueta, C.; Centeno, C.; Viveros, A.; Brenes, A.; Arija, I. Effect of dietary high-oleic acid sunflower seed, palm oil and vitamin E supplementation on broiler performance, fatty acid composition and oxidation susceptibility of meat. Br. Poult. Sci. 2006, 47, 581–591. [Google Scholar] [CrossRef] [PubMed]
- Eleroğlu, H.; Yıldırım, A.; Işıklı, N.D.; Şekeroğlu, A.; Duman, M. Comparison of meat quality and fatty acid profile in slow-growing chicken genotypes fed diets supplemented with Origanum vulgare or Melissa officinalis leaves under the organic system. Ital. J. Anim. Sci. 2013, 12, e64. [Google Scholar] [CrossRef]
- Nguyen, P.; Leray, V.; Diez, M.; Serisier, S.; Bloc’h, J.L.; Siliart, B.; Dumon, H. Liver lipid metabolism. J. Anim. Physiol. Anim. Nutr. 2008, 92, 272–283. [Google Scholar] [CrossRef]
- Hernández-Saavedra, D.; Stanford, K.I. The regulation of lipokines by environmental factors. Nutrients 2019, 11, 2422. [Google Scholar] [CrossRef] [PubMed]
- Roopashree, P.G.; Shetty, S.S.; Kumari, N.S. Effect of medium chain fatty acid in human health and disease. J. Funct. Foods 2021, 87, 104724. [Google Scholar] [CrossRef]
- Borrelli, L.; Varriale, L.; Dipineto, L.; Pace, A.; Menna, L.F.; Fioretti, A. Insect Derived Lauric Acid as Promising Alternative Strategy to Antibiotics in the Antimicrobial Resistance Scenario. Front. Microbiol. 2021, 12, 620798. [Google Scholar] [CrossRef]
- Timbermont, L.; Lanckriet, A.; Dewulf, J.; Nollet, N.; Schwarzer, K.; Haesebrouck, F.; Ducatelle, R.; van Immerseel, F. Control of Clostridium Perfringens-Induced Necrotic Enteritis in Broilers by Target-Released Butyric Acid, Fatty Acids and Essential Oils. Avian Pathol. 2010, 39, 117–121. [Google Scholar] [CrossRef]
- Xia, J.; Yu, P.; Zeng, Z.; Ma, M.; Zhang, G.; Wan, D.; Gong, D.; Deng, S.; Wang, J. High Dietary Intervention of Lauric Triglyceride Might Be Harmful to Its Improvement of Cholesterol Metabolism in Obese Rats. J. Agric. Food Chem. 2021, 69, 4453–4463. [Google Scholar] [CrossRef]
- Alves, N.F.B.; de Queiroz, T.M.; de Almeida Travassos, R.; Magnani, M.; de Andrade Braga, V. Acute Treatment with Lauric Acid Reduces Blood Pressure and Oxidative Stress in Spontaneously Hypertensive Rats. Basic. Clin. Pharmacol. Toxicol. 2017, 120, 348–353. [Google Scholar] [CrossRef]
- Ekanayaka, R.A.I.; Ekanayaka, N.K.; Perera, B.; De Silva, P.G.S.M. Impact of a Traditional Dietary Supplement with Coconut Milk and Soya Milk on the Lipid Profile in Normal Free-Living Subjects. J. Nutr. Metab. 2013, 2013, 481068. [Google Scholar] [CrossRef] [PubMed]
- Sergi, D.; Luscombe-Marsh, N.; Naumovski, N.; Abeywardena, M.; O’Callaghan, N. Palmitic Acid, but Not Lauric Acid, Induces Metabolic Inflammation, Mitochondrial Fragmentation, and a Drop in Mitochondrial Membrane Potential in Human Primary Myotubes. Front. Nutr. 2021, 8, 663838. [Google Scholar] [CrossRef]
- Domínguez, R.; Pateiro, M.; Gagaoua, M.; Barba, F.J.; Zhang, W.; Lorenzo, J.M. A Comprehensive Review on Lipid Oxidation in Meat and Meat Products. Antioxidants 2019, 8, 429. [Google Scholar] [CrossRef] [PubMed]
- Popova, T.; Marinova, P.; Kozelov, L. Lipid Deposition and Fatty Acid. Composition of Some Adipose Depots in Lambs Fed. Coconut Oil Supplemented Diet. Arch. Zootech. 2012, 15, 5–14. [Google Scholar]
- Oppedisano, F.; Macrì, R.; Gliozzi, M.; Musolino, V.; Carresi, C.; Maiuolo, J.; Bosco, F.; Nucera, S.; Zito, M.C.; Guarnieri, L.; et al. The Anti-Inflammatory and Antioxidant Properties of n-3 PUFA: Their Role in Cardiovascular Protection. Biomedicines 2020, 8, 306. [Google Scholar] [CrossRef] [PubMed]
- Djuricic, I.; Calder, P.C. Beneficial Outcomes of Omega-6 and Omega-3 Polyunsaturated Fatty Acids on Human Health: An Update for 2021. Nutrients 2021, 13, 2421. [Google Scholar] [CrossRef]
- Dal Bosco, A.; Mugnai, C.; Mattioli, S.; Rosati, A.; Ruggeri, S.; Ranucci, D.; Castellini, C. Transfer of Bioactive Compounds from Pasture to Meat in Organic Free-Range Chickens. Poult. Sci. 2016, 95, 2464–2471. [Google Scholar] [CrossRef]
- Giampietro-Ganeco, A.; Boiago, M.M.; Mello, J.L.M.; De Souza, R.A.; Ferrari, F.B.; De Souza, P.A.; Borba, H. Lipid Assessment, Cholesterol and Fatty Acid Profile of Meat from Broilers Raised in Four Different Rearing Systems. An. Acad. Bras. Cienc. 2020, 92, e20190649. [Google Scholar] [CrossRef]
- Chen, J.; Liu, H. Nutritional Indices for Assessing Fatty Acids: A Mini-Review. Int. J. Mol. Sci. 2020, 21, 5695. [Google Scholar] [CrossRef]
- Simopoulos, A.P. An Increase in the Omega-6/Omega-3 Fatty Acid Ratio Increases the Risk for Obesity. Nutrients 2016, 8, 128. [Google Scholar] [CrossRef] [PubMed]
- Mir, N.A.; Tyagi, P.K.; Biswas, A.K.; Tyagi, P.K.; Mandal, A.B.; Kumar, F.; Sharma, D.; Biswas, A.; Verma, A.K. Inclusion of Flaxseed, Broken Rice, and Distillers Dried Grains with Solubles (DDGS) in Broiler Chicken Ration Alters the Fatty Acid Profile, Oxidative Stability, and Other Functional Properties of Meat. Eur. J. Lipid Sci. Technol. 2018, 120, 1700470. [Google Scholar] [CrossRef]
- Zong, G.; Li, Y.; Wanders, A.J.; Alssema, M.; Zock, P.L.; Willett, W.C.; Hu, F.B.; Sun, Q. Intake of Individual Saturated Fatty Acids and Risk of Coronary Heart Disease in US Men and Women: Two Prospective Longitudinal Cohort Studies. BMJ 2016, 355, i5796. [Google Scholar] [CrossRef] [PubMed]
- Yurchenko, S.; Sats, A.; Tatar, V.; Kaart, T.; Mootse, H.; Jõudu, I. Fatty Acid Profile of Milk from Saanen and Swedish Landrace Goats. Food Chem. 2018, 254, 326–332. [Google Scholar] [CrossRef] [PubMed]
Raw Material | 1° Feed Period (%) | 2° Feed Period | ||
---|---|---|---|---|
S100 (%) | BSL50 (%) | BSL100 (%) | ||
Soybean cake | 33.80 | 27.00 | 13.99 | 0.00 |
Maize | 30.00 | 28.60 | 38.01 | 33.30 |
Wheat | 15.00 | 20.50 | 13.81 | 15.99 |
Bran | 7.00 | 0.00 | 0.00 | 0.00 |
Maize gluten | 4.20 | 3.00 | 4.69 | 4.79 |
Barley | 4.00 | 14.30 | 11.96 | 15.99 |
Soybean vegetable oil | 2.38 | 2.62 | 2.12 | 1.69 |
Calcium carbonate | 1.10 | 1.22 | 0.88 | 0.00 |
Monocalcium phosphate | 0.87 | 0.00 | 1.00 | 0.90 |
Sodium chloride | 0.35 | 0.34 | 0.36 | 0.29 |
Dicalcium phosphate | 0.30 | 1.50 | 0.00 | 0.00 |
Lysine | 0.10 | 0.12 | 0.39 | 0.66 |
Choline chloride | 0.10 | 0.10 | 0.09 | 0.09 |
Betaine anhydrous | 0.20 | 0.20 | 0.14 | 0.14 |
Oligo-vitamin supplement | 0.60 | 0.50 | 0.50 | 0.49 |
Insect meal | 0.00 | 0.00 | 12.00 | 25.60 |
Analytical Component | 1° Feed Period | 2° Feed Period | ||
---|---|---|---|---|
S100 | BSL50 | BSL100 | ||
Crude protein (%) | 21.60 | 19.00 | 19.50 | 19.50 |
Crude fiber (%) | 3.87 | 3.30 | 4.60 | 3.70 |
Ashes (%) | 6.00 | 5.80 | 5.70 | 5.90 |
Fats (%) | 6.50 | 6.20 | 6.40 | 6.50 |
Lysine (mg/kg) | 1.25 | 1.00 | 1.02 | 1.00 |
Methionine (mg/kg) | 0.50 | 0.45 | 0.53 | 0.47 |
Calcium (mg/kg) | 0.90 | 1.00 | 1.00 | 1.00 |
Sodium (mg/kg) | 0.17 | 0.17 | 0.19 | 0.18 |
Phosphorus (mg/kg) | 0.70 | 0.65 | 0.66 | 0.64 |
Metabolizable energy (Kcal/kg) (DM) | 3109.00 | 3377.73 | 3365.45 | 3370.18 |
Analytical Component | BSL Meal |
---|---|
Crude protein (g/100 g) | 53.10 |
Crude fiber (g/100 g) | 11.50 |
Moisture (g/100 g) | 6.50 |
Ashes (g/100 g) | 6.30 |
Fats (g/100 g) | 11.90 |
Lysine (g/100 g) | 2.94 |
Methionine (g/100 g) | 0.47 |
Cysteine (g/100 g) | 0.41 |
Threonine (g/100 g) | 3.24 |
Calcium (g/kg) | 7.77 |
Sodium (g/kg) | 4.39 |
S100 | BSL50 | BSL100 | RMSE | p-Value | |
---|---|---|---|---|---|
Live weight (g) | 3887.53 a | 3672.67 b | 3656.87 b | 82.08 | 0.001 |
Carcass weight (g) | 3127.30 a | 3177.67 a | 2959.70 b | 295.77 | 0.014 |
Thigh (g) | 215.43 a | 189.73 b | 200.08 b | 23.21 | 0.001 |
Breast (g) | 795.50 a | 776.56 a | 720.14 b | 53.74 | 0.022 |
Fatty Acid Profile | BSL Meal (% of Total FAME) |
---|---|
C12:0 | 44.70 |
C14:0 | 8.77 |
C16:0 | 13.72 |
C18:0 | 2.12 |
2 ƩSFA | 69.31 |
C14:1 | 0.25 |
C16:1 n-7 | 2.46 |
C18:1 n-7 | 10.95 |
2 ƩMUFA | 13.66 |
C18:2 n-6 | 14.27 |
C18:3 n-3 | 1.24 |
2 ƩPUFA | 15.51 |
n-6 | 14.27 |
n-3 | 1.24 |
n-6/n-3 | 11.51 |
THIGH | S100 | BSL50 | BSL100 | RMSE | p-Value |
---|---|---|---|---|---|
C12:0 | 0.30 c | 2.67 b | 4.32 a | 0.392 | <0.0001 |
C14:0 | 0.63 c | 1.51 b | 1.75 a | 0.236 | <0.0001 |
C16:0 | 19.54 c | 20.39 b | 21.08 a | 0.790 | <0.0001 |
C18:0 | 7.45 a | 7.03 b | 7.28 a | 0.452 | 0.0023 |
C22:0 | 0.25 a | 0.23 a | 0.20 b | 0.042 | 0.0007 |
2 ƩSFA | 28.17 c | 31.83 b | 34.64 a | 1.138 | <0.0001 |
C14:1 | 0.07 b | 0.16 a | 0.19 a | 0.062 | <0.0001 |
C16:1 n7 | 2.38 b | 2.91 a | 3.07 a | 0.410 | <0.0001 |
C18:1 n9 | 30.79 a | 30.53 a | 29.64 b | 0.841 | <0.0001 |
C18:1 n7 | 1.79 | 1.79 | 1.85 | 0.128 | 0.128 |
2 ƩMUFA | 35.03 | 35.39 | 34.75 | 1.014 | 0.053 |
C18:2 n6 | 27.58 a | 24.71 b | 22.26 c | 1.172 | <0.0001 |
C18:3 n6 | 0.22 b | 0.25 a | 0.23 b | 0.032 | 0.021 |
C18:3 n3 | 2.30 a | 2.12 b | 1.95 c | 0.241 | <0.0001 |
C20:2 n6 | 0.26 a | 0.22 b | 0.19 c | 0.022 | <0.0001 |
C20:3 n6 | 0.04 | 0.04 | 0.04 | 0.020 | 0.750 |
C20:4 n6 | 2.24 a | 1.72 b | 2.19 a | 0.352 | <0.0001 |
C20:5 n3 | 0.07 | 0.08 | 0.07 | 0.013 | 0.128 |
C22:5 n3 | 0.43 a | 0.32 b | 0.33 b | 0.068 | <0.0001 |
C22:6 n3 | 0.37 a | 0.27 b | 0.28 b | 0.065 | <0.0001 |
2 ƩPUFA | 33.53 a | 29.72 b | 27.55 c | 1.436 | <0.0001 |
2 Ʃn6 | 30.34 a | 26.93 b | 24.91 c | 1.282 | <0.0001 |
2 Ʃn3 | 3.18 a | 2.79 b | 2.64 c | 0.284 | <0.0001 |
2 Ʃn6/2 Ʃn3 | 9.59 | 9.70 | 9.60 | 0.904 | 0.876 |
3 Other | 3.27 | 3.05 | 3.06 | 0.467 | 0.118 |
BREAST | S100 | BSL50 | BSL100 | RMSE | p-Value |
---|---|---|---|---|---|
C12:0 | 0.34 c | 1.81 b | 3.09 a | 0.284 | <0.0001 |
C14:0 | 0.62 c | 1.14 b | 1.53 a | 0.145 | <0.0001 |
C16:0 | 19.33 b | 20.32 a | 19.81 ab | 1.510 | 0.0433 |
C18:0 | 7.63 a | 7.40 a | 6.47 b | 0.624 | <0.0001 |
C22:0 | 0.25 a | 0.13 c | 0.22 b | 0.036 | <0.0001 |
2 ƩSFA | 28.18 b | 30.81 a | 30.98 a | 1.781 | <0.0001 |
C14:1 | 0.08 c | 0.15 b | 0.17 a | 0.017 | <0.0001 |
C16:1 n-7 | 2.54 b | 2.55 b | 3.12 a | 0.363 | <0.0001 |
C18:1 n-9 | 29.90 b | 29.93 b | 31.27 a | 1.217 | <0.0001 |
C18:1 n-7 | 1.74 b | 1.90 a | 1.84 a | 0.166 | 0.0010 |
2 ƩMUFA | 34.26 b | 34.53 b | 36.41 a | 1.163 | <0.0001 |
C18:2 n-6 | 27.37 a | 25.71 b | 24.85 c | 1.291 | <0.0001 |
C18:3 n-6 | 0.23 b | 0.27 a | 0.23 b | 0.024 | <0.0001 |
C18:3 n-3 | 2.34 a | 2.29 a | 2.01 b | 0.222 | <0.0001 |
C20:2 n-6 | 0.41 a | 0.27 c | 0.32 b | 0.035 | <0.0001 |
C20:3 n-6 | 0.04 b | 0.06 a | 0.04 b | 0.009 | <0.0001 |
C20:4 n-6 | 3.37 a | 2.11 b | 1.57 c | 0.290 | <0.0001 |
C20:5 n-3 | 0.07 b | 0.10 a | 0.07 b | 0.015 | <0.0001 |
C22:5 n-3 | 0.41 a | 0.33 b | 0.20 c | 0.052 | <0.0001 |
C22:6 n-3 | 0.35 a | 0.27 b | 0.15 c | 0.048 | <0.0001 |
2 ƩPUFA | 34.60 a | 31.41 b | 29.44 c | 1.465 | <0.0001 |
2 Ʃn-6 | 31.42 a | 28.43 b | 27.01 c | 1.354 | <0.0001 |
2 Ʃn-3 | 3.10 a | 2.89 b | 2.36 c | 0.224 | <0.0001 |
2 Ʃn-6/2 Ʃn-3 | 10.17 b | 9.89 b | 11.54 a | 0.771 | <0.0001 |
3 Other | 2.96 | 3.24 | 3.02 | 0.607 | 0.1832 |
THIGH | S100 | BSL50 | BSL100 | RMSE | p-Value |
---|---|---|---|---|---|
ƩPUFA/ƩSFA | 1.191 a | 0.936 b | 0.797 c | 0.071 | <0.0001 |
IA | 0.326 c | 0.447 b | 0.521 a | 0.030 | <0.0001 |
IT | 0.457 c | 0.500 b | 0.541 a | 0.026 | <0.0001 |
hH | 3.147 a | 2.457 b | 2.111 c | 0.155 | <0.0001 |
HPI | 3.073 a | 2.243 b | 1.928 c | 0.165 | <0.0001 |
UI | 112.144 a | 102.975 b | 98.795 c | 3.091 | <0.0001 |
FLQ | 0.341 a | 0.280 b | 0.285 b | 0.057 | <0.0001 |
LA/ALA | 12.063 | 11.739 | 11.678 | 1.352 | 0.4989 |
BREAST | S100 | BSL50 | BSL100 | RMSE | p-Value |
---|---|---|---|---|---|
PUFA/SFA | 1.233 a | 1.026 b | 0.955 c | 0.111 | <0.0001 |
IA | 0.322 c | 0.406 b | 0.442 a | 0.033 | <0.0001 |
IT | 0.461 b | 0.499 a | 0.484 a | 0.042 | 0.0039 |
hH | 3.194 a | 2.655 b | 2.500 c | 0.285 | <0.0001 |
HPI | 3.117 a | 2.479 b | 2.278 c | 0.237 | <0.0001 |
UI | 115.666 a | 106.560 b | 102.124 c | 3.584 | <0.0001 |
FLQ | 0.322 a | 0.287 b | 0.176 c | 0.048 | <0.0001 |
LA/ALA | 11.788 b | 11.324 b | 12.484 a | 1.080 | 0.0003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
La Mantia, M.C.; Calì, M.; Petrocchi Jasinski, L.; Contò, M.; Meo Zilio, D.; Renzi, G.; Guarino Amato, M. Black Soldier Meal in Feed Could Adversely Affect Organic Broiler Meat Quality When Used for the Total or Half Replacement of Diet Proteins. Poultry 2024, 3, 66-84. https://doi.org/10.3390/poultry3020007
La Mantia MC, Calì M, Petrocchi Jasinski L, Contò M, Meo Zilio D, Renzi G, Guarino Amato M. Black Soldier Meal in Feed Could Adversely Affect Organic Broiler Meat Quality When Used for the Total or Half Replacement of Diet Proteins. Poultry. 2024; 3(2):66-84. https://doi.org/10.3390/poultry3020007
Chicago/Turabian StyleLa Mantia, Maria Chiara, Massimo Calì, Luigi Petrocchi Jasinski, Michela Contò, David Meo Zilio, Gianluca Renzi, and Monica Guarino Amato. 2024. "Black Soldier Meal in Feed Could Adversely Affect Organic Broiler Meat Quality When Used for the Total or Half Replacement of Diet Proteins" Poultry 3, no. 2: 66-84. https://doi.org/10.3390/poultry3020007
APA StyleLa Mantia, M. C., Calì, M., Petrocchi Jasinski, L., Contò, M., Meo Zilio, D., Renzi, G., & Guarino Amato, M. (2024). Black Soldier Meal in Feed Could Adversely Affect Organic Broiler Meat Quality When Used for the Total or Half Replacement of Diet Proteins. Poultry, 3(2), 66-84. https://doi.org/10.3390/poultry3020007