Evaluation of Boron as a Feed Additive to Improve Musculoskeletal Health of Hy-Line W-36 Pullets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics
2.2. Animals and Housing
2.3. Treatments
2.4. Performance
2.5. Computed Tomography (CT) Image Acquisition
2.6. Bone Cross-Sectional Area (CSA) and Bone Mineral Density (BMD)
2.7. Muscle Deposition
2.8. Ash Percentage
2.9. Breaking Strength
2.10. Bone Mineralization
2.11. Statistical Analysis
3. Results
3.1. Performance
3.2. Bone Cross-Sectional Area (CSA) and Bone Mineral Density (BMD)
3.3. Muscle Deposition
3.4. Ash Percentage
3.5. Breaking Strength
3.6. Bone Mineralization
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Whitehead, C.C. Overview of Bone Biology in the Egg-Laying Hen. Poult. Sci. 2004, 83, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Whitehead, C.C. Bone Biology and Skeletal Disorders in Poultry; Poultry Science Symposium Series; Carfax Publishing Co.: Abingdon, UK, 1992. [Google Scholar]
- Whitehead, C.C.; Fleming, R.H. Osteoporosis in Cage Layers. Poult. Sci. 2000, 79, 1033–1041. [Google Scholar] [CrossRef]
- Chen, C.; Turner, B.; Applegate, T.J.; Litta, G.; Kim, W.K. Role of Long-Term Supplementation of 25-Hydroxyvitamin D3 on Egg Production and Egg Quality of Laying Hen. Poult. Sci. 2020, 99, 6899–6906. [Google Scholar] [CrossRef]
- Liu, D.; Veit, H.; Wilson, J.; Denbow, D. Long-Term Supplementation of Various Dietary Lipids Alters Bone Mineral Content, Mechanical Properties and Histological Characteristics of Japanese Quail. Poult. Sci. 2003, 82, 831–839. [Google Scholar] [CrossRef] [PubMed]
- Bhattarai, H.K.; Shrestha, S.; Rokka, K.; Shakya, R. Vitamin D, Calcium, Parathyroid Hormone, and Sex Steroids in Bone Health and Effects of Aging. J. Osteoporos 2020, 2020, 9324505. [Google Scholar] [CrossRef] [PubMed]
- Elliot, M.A.; Edwards, H.M. Studies to Determine Whether an Interaction Exists Among Boron, Calcium, and Cholecalciferol on the Skeletal Development of Broiler Chickens. Poult. Sci. 1992, 71, 677–690. [Google Scholar] [CrossRef]
- Rossi, A.F.; Miles, R.D.; Damron, B.L.; Flunker, L.K. Effects of Dietary Boron Supplementation on Broilers. Poult. Sci. 1993, 72, 2124–2130. [Google Scholar] [CrossRef]
- Hunt, C.D. Dietary Boron Modified the Effects of Magnesium and Molybdenum on Mineral Metabolism in the Cholecalciferol-Deficient Chick. Biol. Trace Elem. Res. 1989, 22, 201–220. [Google Scholar] [CrossRef]
- Fassani, E.; Bertechini, A.; Brito, J.; Kato, R.; Fialho, E.; Geraldo, A. Boron Supplementation in Broiler Diets. Rev. Bras. Cienc. Avic 2004, 6, 213–217. [Google Scholar] [CrossRef]
- Kurtoğlu, F.; Kurtoğlu, V.; Çelik, İ.; Keçeci, T.; Nizamlioğlu, M. Effects of Dietary Boron Supplementation on Some Biochemical Parameters, Peripheral Blood Lymphocytes, Splenic Plasma Cells and Bone Characteristics of Broiler Chicks given Diets with Adequate or Inadequate Cholecalciferol (Vitamin D). Br. Poult. Sci. 2005, 46, 87–96. [Google Scholar] [CrossRef]
- Kurtoĝlu, V.; Kurtoĝlu, F.; Coşkun, B. Effects of Boron Supplementation of Adequate and Inadequate Vitamin D3-Containing Diet on Performance and Serum Biochemical Characters of Broiler Chickens. Res. Vet. Sci. 2001, 71, 183–187. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, F.H.; Shuler, T.R. Studies of the Interaction between Boron and Calcium, and Its Modification by Magnesium and Potassium, in Rats. Biol. Trace Elem. Res. 1992, 35, 225–237. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, F.H. The justification for providing dietary guidance for the nutritional intake of boron. Biol. Trace Elem. Res. 1998, 66, 319–330. [Google Scholar] [CrossRef] [PubMed]
- Sizmaz, O.; Yildiz, G. Influence of Dietary Boric Acid and Ascorbic Acid on Performance, Egg Traits, Cholesterol and Bone Parameters of Laying Hens. Ankara Üniv. Vet. Fak. Derg. 2016, 63, 151–156. [Google Scholar]
- Adarsh, V.; Dintaran, P.; Shivakumar, G.N.K.; Vijayarangam, E.A.; Kumar, D.D.; Nagaraj, K.; Eknath, J.S. Effect of Boron Supplementation on Laying Performance of White Leghorn Hens Fed Diet with and without Adequate Level of Calcium. Trop. Anim. Health Prod. 2021, 53, 444. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J.H.; Ruszler, P.L. Effects of Boron on Growing Pullets. Biol. Trace Elem. Res. 1997, 56, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Kurtoğlu, V.; Kurtoğlu, F.; Coşkun, B. Effects of Boron Supplementation on Performance and Some Serum Biochemical Parameters in Laying Hens. Rev. De Médecine Vétérinaire 2006, 153, 823–828. [Google Scholar]
- Olgun, O.; Yazgan, O.; Cufadar, Y. Effects of Boron and Copper Dietary Supplementation in Laying Hens on Egg Shell Quality, Plasma and Tibia Mineral Concentrations and Bone Biomechanical Properties. Rev. Med. Vet. 2012, 163, 335–342. [Google Scholar]
- Mizrak, C.; Yenice, E.; Can, M.; Yildririm, U.; Atik, Z. Effects of Dietary Boron on Performance, Egg Production, Egg Quality, and Some Bone Parameters in Layer Hens. S. Afr. J. Anim. Sci. 2010, 40, 257–264. [Google Scholar] [CrossRef]
- Wilson, J.H.; Ruszler, P.L. Effects of Dietary Boron Supplementation on Laying Hens. Br. Poult. Sci. 1996, 37, 723–729. [Google Scholar] [CrossRef]
- Wilson, J.H.; Ruszler, P.L. Long Term Effects of Boron on Layer Bone Strength and Production Parameters. Br. Poult. Sci. 1998, 39, 11–15. [Google Scholar] [CrossRef] [PubMed]
- Hy-Line W36. Hy-Line Management Guide. Available online: https://www.hyline.com/filesimages/Hy-Line-Products/Hy-Line-Product-PDFs/W-36/36%20COM%20ENG.pdf (accessed on 25 March 2024).
- Johnson, A.M.; Anderson, G.; Arguelles-Ramos, M.; Ali, A.A.B. Effect of Dietary Essential Oil of Oregano on Performance Parameters, Gastrointestinal Traits, Blood Lipid Profile, and Antioxidant Capacity of Laying Hens during the Pullet Phase. Front. Anim. Sci. 2022, 3, 1072712. [Google Scholar] [CrossRef]
- Harrison, C.; Jones, J.; Bridges, W.; Anderson, G.; Ali, A.; Mercuri, J. Associations among Computed Tomographic Measures of Bone and Muscle Quality and Biomechanical Measures of Tibiotarsal Bone Quality in Laying Hens. Am. J. Vet. Res. 2023, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Anderson, M.G.; Johnson, A.M.; Harrison, C.; Arguelles-Ramos, M.; Ali, A. Impact of Perch Provision Timing on Activity and Musculoskeletal Health of Laying Hens. Animals 2024, 14, 265. [Google Scholar] [CrossRef] [PubMed]
- Casey-Trott, T.M.; Korver, D.R.; Guerin, M.T.; Sandilands, V.; Torrey, S.; Widowski, T.M. Opportunities for Exercise during Pullet Rearing, Part I: Effect on the Musculoskeletal Characteristics of Pullets. Poult. Sci. 2017, 96, 2509–2517. [Google Scholar] [CrossRef] [PubMed]
- ANSI/ASAE. ANSI/ASAE S459 MAR1992 (R2017) Shear and Three-Point Bending Test of Animal Bone; St. Joseph: Lancaster, MA, USA, 2017. [Google Scholar]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using Lme4. J. Stat. Softw. 2015, 67. [Google Scholar] [CrossRef]
- Hothorn, T.; Bretz, F.; Westfall, P. Simultaneous Inference in General Parametric Models. Biom. J. 2008, 50, 346–363. [Google Scholar] [CrossRef]
- Cheng, J.; Peng, K.; Jin, E.; Zhang, Y.; Liu, Y.; Zhang, N.; Song, H.; Liu, H.; Tang, Z. Effect of Additional Boron on Tibias of African Ostrich Chicks. Biol. Trace Elem. Res 2011, 144, 538–549. [Google Scholar] [CrossRef]
- Devirian, T.A.; Volpe, S.L. The Physiological Effects of Dietary Boron. Crit. Rev. Food Sci. Nutr. 2003, 43, 219–231. [Google Scholar] [CrossRef]
- Bai, Y.; Hunt, C.D. Dietary Boron Enhances Efficacy of Cholecalciferol in Broiler Chicks. J. Trace Elem. Exp. Med. 1996, 9, 117–132. [Google Scholar] [CrossRef]
- Nielsen, F.H. Dietary Fat Composition Modifies the Effect of Boron on Bone Characteristics and Plasma Lipids in Rats. BioFactors 2004, 20, 161–171. [Google Scholar] [CrossRef] [PubMed]
- Whitehead, C.C.; Fleming, R.H.; Julian, R.J.; Sørensen, P. Skeletal Problems Associated with Selection for Increased Production. Poult. Genet. Breed. Biotechnol. 2003, 3, 29–52. [Google Scholar]
- Bozkurt, M.; Küçükyilmaz, K.; Çath, A.U.; Çinar, M.; Çabuk, M.; Bintaş, E. Effects of Boron Supplementation to Diets Deficient in Calcium and Phosphorus on Performance with Some Serum, Bone and Fecal Characteristics of Broiler Chickens. Asian-Australas. J. Anim. Sci. 2012, 25, 248. [Google Scholar] [CrossRef]
- Magnusson, P.; Arlestig, L.; Paus, E.; Di Mauro, S.; Testa, M.P.; Stigbrand, T.; Farley, J.R.; Nustad, K.; Millan, J.L. Monoclonal Antibodies against Tissue-Nonspecific Alkaline Phosphatase. Tumor Biol. 2002, 23, 228–248. [Google Scholar] [CrossRef] [PubMed]
- Chavassieux, P.; Portero-Muzy, N.; Roux, J.-P.; Garnero, P.; Chapurlat, R. Are Biochemical Markers of Bone Turnover Representative of Bone Histomorphometry in 370 Postmenopausal Women? J. Clin. Endocrinol. Metab. 2015, 100, 4662–4668. [Google Scholar] [CrossRef] [PubMed]
- Shipov, A.; Sharir, A.; Zelzer, E.; Milgram, J.; Monsonego-Ornan, E.; Shahar, R. The Influence of Severe Prolonged Exercise Restriction on the Mechanical and Structural Properties of Bone in an Avian Model. Vet. J. 2010, 183, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Kolakshyapati, M.; Flavel, R.J.; Sibanda, T.Z.; Schneider, D.; Welch, M.C.; Ruhnke, I. Various Bone Parameters Are Positively Correlated with Hen Body Weight While Range Access Has No Beneficial Effect on Tibia Health of Free-Range Layers. Poult. Sci. 2019, 98, 6241–6250. [Google Scholar] [CrossRef] [PubMed]
- Manet, M.W.E.; Kliphuis, S.; Nordquist, R.E.; Goerlich, V.C.; Tuyttens, F.A.M.; Rodenburg, T.B. Brown and White Layer Pullet Hybrids Show Different Fear Responses towards Humans, but What Role Does Light during Incubation Play in That? Appl. Anim. Behav. Sci. 2023, 267, 106056. [Google Scholar] [CrossRef]
- De Haas, E.N.; Bolhuis, J.E.; de Jong, I.C.; Kemp, B.; Janczak, A.M.; Rodenburg, T.B. Predicting Feather Damage in Laying Hens during the Laying Period. Is It the Past or Is It the Present? Appl. Anim. Behav. Sci. 2014, 160, 75–85. [Google Scholar] [CrossRef]
- Moinard, C.; Statham, P.; Green, P.R. Control of Landing Flight by Laying Hens: Implications for the Design of Extensive Housing Systems. Br. Poult. Sci. 2004, 45, 578–584. [Google Scholar] [CrossRef]
- Harlander-Matauschek, A.; Rodenburg, T.B.; Sandilands, V.; Tobalske, B.W.; Toscano, M.J. Causes of Keel Bone Damage and Their Solutions in Laying Hens. Worlds Poult. Sci. J. 2015, 71, 461–472. [Google Scholar] [CrossRef]
- Jackson, B.E.; Tobalske, B.W.; Dial, K.P. The Broad Range of Contractile Behaviour of the Avian Pectoralis: Functional and Evolutionary Implications. J. Exp. Biol. 2011, 214, 2354–2361. [Google Scholar] [CrossRef] [PubMed]
- Pufall, A.; Harlander-Matauschek, A.; Hunniford, M.; Widowski, T.M. Effects of Rearing Aviary Style and Genetic Strain on the Locomotion and Musculoskeletal Characteristics of Layer Pullets. Animals 2021, 11, 634. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.K.; Donalson, L.M.; Herrera, P.; Woodward, C.L.; Kubena, L.F.; Nisbet, D.J.; Ricke, S.C. Research Note: Effects of Different Bone Preparation Methods (Fresh, Dry, and Fat-Free Dry) on Bone Parameters and the Correlations Between Bone Breaking Strength and the Other Bone Parameters. Poult. Sci. 2004, 83, 1663–1666. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.J. Bone Mechanical Testing by Three-Point Bending. Washington University Musculoskeletal Structure and Strength Core. 2016. Available online: https://cpb-us-w2.wpmucdn.com/sites.wustl.edu/dist/f/1982/files/2019/05/Understanding-3pt-Bending-outcomes.pdf (accessed on 25 March 2024).
- McCoy, H.; Kenney, M.A.; Montgomery, C.; Irwin, A.; Williams, L.; Orrell, R. Relation of Boron to the Composition and Mechanical Properties of Bone. Environ. Health Perspect. 1994, 102, 49–53. [Google Scholar] [CrossRef]
- Wilson, J.H.; Ruszler, P.L. Effects of Dietary Boron on Poultry Bone Strength. Trans. ASAE 1995, 38, 167–170. [Google Scholar] [CrossRef]
Ingredient | Starter 1 (%) | Starter 2 (%) | Grower (%) | Pre-Lay (%) |
---|---|---|---|---|
Corn | 58.5 | 61.9 | 61.9 | 61.8 |
45% Soybean Meal | 35.7 | 27.8 | 22.0 | 21.7 |
Mono-dicalcium Phosphate | 1.45 | 1.41 | 1.38 | 2.19 |
Wheat Middlings | 1.31 | 6.42 | 12.4 | 9.68 |
Calcium Carbonate | 1.24 | 1.26 | 1.36 | 2.88 |
Soybean Oil | 0.50 | 0.00 | 0.00 | 0.00 |
Salt | 0.45 | 0.45 | 0.45 | 0.45 |
Choline Chloride 60% | 0.45 | 0.40 | 0.40 | 0.40 |
DL-Methionine | 0.27 | 0.22 | 0.19 | 0.19 |
Vitamin/Mineral Premix * | 0.15 | 0.15 | 0.15 | 0.15 |
L-Threonine | 0.04 | 0.04 | 0.05 | 0.06 |
L-Lysine | 0.00 | 0.03 | 0.05 | 0.53 |
Calculated analysis | ||||
Crude Protein | 20.0 | 18.3 | 17.5 | 16.5 |
Crude Fat | 1.89 | 1.66 | 1.90 | 1.95 |
Crude Fiber | 4.04 | 3.87 | 2.91 | 2.65 |
Calcium | 1.05 | 1.00 | 0.95 | 2.50 |
Phosphorus | 0.35 | 0.34 | 0.74 | 0.81 |
Methionine | 0.46 | 0.40 | 0.40 | 0.35 |
Threonine | 0.72 | 0.66 | 0.63 | 0.57 |
Lysine | 1.01 | 0.85 | 0.75 | 0.75 |
Metabolizable Energy (kcal/kg) | 2926 | 2906 | 2882 | 2893 |
Body Weight/Bird | |||||
---|---|---|---|---|---|
Week | 4 | 7 | 10 | 13 | 16 |
C | 332.7 ± 13.5 | 581.2 ± 25.6 | 787.6 ± 30.0 | 1192.5 ± 37.0 | 1306.5 ± 43.6 |
L | 339.9 ± 13.0 | 588.7 ± 23.6 | 792.6 ± 25.6 | 1196.6 ± 41.2 | 1352.7 ± 44.5 |
M | 345.5 ± 14.0 | 583.5 ± 24.6 | 796.9 ± 31.5 | 1232.4 ± 32.0 | 1299.4 ± 49.3 |
H | 350.0 ± 16.2 | 592.6 ± 30.5 | 802.4 ± 38.3 | 1203.7 ± 39.0 | 1367.0 ± 56.2 |
Average daily weight gain/bird | |||||
C | 12.3 ± 1.2 | 79.9 ± 9.6 | 80.4 ± 8.3 | 72.5 ± 11.0 | 49.2 ± 6.7 |
L | 12.4 ± 1.0 | 77.0 ± 6.6 | 82.3 ± 9.6 | 76.6 ± 12.3 | 48.3 ± 5.9 |
M | 13.5 ± 1.5 | 81.0 ± 8.3 | 86.2 ± 10.3 | 81.3 ± 10.3 | 50.5 ± 9.9 |
H | 14.0 ± 1.2 | 86.6 ± 5.6 | 89.9 ± 5.9 | 79.7 ± 9.6 | 50.9 ± 10.6 |
Average daily feed intake/bird | |||||
C | 31.1 ± 4.9 | 48.3 ± 6.6 | 68.3 ± 6.0 | 80.0 ± 11.3 | 84.3 ± 6.7 |
L | 30.2 ± 5.2 | 49.3 ± 10.0 | 68.1 ± 6.9 | 79.6 ± 9.6 | 83.7 ± 5.3 |
M | 30.5 ± 6.3 | 48.1 ± 8.6 | 67.3 ± 10.6 | 78.9 ± 10.7 | 82.6 ± 7.0 |
H | 31.0 ± 5.7 | 48.0 ± 6.0 | 66.2 ± 12.0 | 78.0 ± 13.0 | 81.0 ± 3.6 |
Week 11 | ||||||
---|---|---|---|---|---|---|
CSA | ||||||
Total | Cortical | |||||
Proximal | Middle | Distal | Proximal | Middle | Distal | |
C | 46.7 ± 0.8 a | 35.1 ± 0.9 a | 36.9 ± 0.9 a | 31.0 ± 0.8 a | 25.5 ± 0.7 a | 26.0 ± 0.7 a |
L | 47.2 ± 0.9 a | 35.7 ± 0.6 a | 37.3 ± 0.8 a | 31.3 ± 0.7 a | 25.8 ± 0.7 a | 26.5 ± 0.8 a |
M | 47.3 ± 0.9 a | 36.2 ± 0.8 a | 37.5 ± 0.8 a | 33.2 ± 0.6 a | 26.7 ± 0.9 a | 27.2 ± 0.5 a |
H | 47.8 ± 0.8 a | 36.5 ± 0.8 a | 38.0 ± 1.2 a | 34.2 ± 0.8 b | 27.5 ± 0.9 b | 27.6 ± 0.4 a |
BMD | ||||||
Total | Cortical | |||||
Proximal | Middle | Distal | Proximal | Middle | Distal | |
C | 378.9 ± 7.1 a | 539.3 ± 12.1 a | 496.9 ± 11.0 a | 665.0 ± 13.2 a | 927.6 ± 54.4 a | 778.4 ± 49.8 a |
L | 401.3 ± 9.0 b | 553.8 ± 8.0 b | 541.1 ± 11.0 b | 681.4 ± 11.0 a | 1208.0 ± 74.9 b | 896.4 ± 62.2 b |
M | 415.4 ± 8.5 b | 568.2 ± 11.0 b | 570.2 ± 11.2 c | 789.0 ± 11.3 b | 1418.3 ± 105.9 c | 1095.3 ± 50.4 c |
H | 429.7 ± 8.0 b | 616.1 ± 11.4 c | 673.0 ± 118.6 d | 856.5 ± 16.8 c | 1516.3 ± 114.2 c | 1273.3 ± 49.2 d |
Week 17 | ||||||
---|---|---|---|---|---|---|
CSA | ||||||
Total | Cortical | |||||
Proximal | Middle | Distal | Proximal | Middle | Distal | |
C | 61.5 ± 1.0 a | 46.2 ± 1.2 a | 48.6 ± 1.2 a | 40.9 ± 1.1 a | 33.5 ± 0.9 a | 34.2 ± 1.0 a |
L | 62.0 ± 1.2 a | 47.0 ± 0.8 a | 49.0 ± 1.1 a | 41.1 ± 0.9 a | 33.9 ± 0.9 a | 34.9 ± 1.0 a |
M | 62.1 ± 1.1 a | 47.6 ± 1.1 a | 49.2 ± 1.1 a | 43.6 ± 0.8 b | 35.0 ± 1.1 b | 35.7 ± 0.7 a |
H | 62.7 ± 1.0 a | 47.9 ± 1.0 a | 49.9 ± 1.5 a | 44.9 ± 1.1 b | 36.0 ± 1.1 c | 36.1 ± 0.6 b |
BMD | ||||||
Total | Cortical | |||||
Proximal | Middle | Distal | Proximal | Middle | Distal | |
C | 533.6 ± 10.0 a | 759.6 ± 17.0 a | 699.9 ± 15.5 a | 936.7 ± 18.6 a | 1306.5 ± 76.6 a | 1096.3 ± 70.2 a |
L | 563.6 ± 12.6 a | 777.9 ± 11.2 a | 760.0 ± 15.5 b | 957.0 ± 15.5 a | 1696.6 ± 105.2 b | 1259.0 ± 87.3 b |
M | 582.6 ± 11.9 a | 796.9 ± 15.4 a | 799.7 ± 15.7 c | 1106.6 ± 15.9 b | 1989.3 ± 148.5 c | 1536.3 ± 70.7 c |
H | 601.9 ± 11.1 b | 862.9 ± 16.0 b | 942.6 ± 26.0 d | 1199.6 ± 23.6 b | 2123.6 ± 160.0 d | 1783.4 ± 69.0 d |
Week 11 | |||
Failure Load | Stiffness | Maximum Bending Moment | |
C | 178.2 ± 5.4 a | 174.6 ± 3.6 a | 471.3 ± 13.6 a |
L | 177.4 ± 6.7 a | 183.6 ± 6.9 a | 485.1 ± 12.1 a |
M | 202.8 ± 7.3 b | 220.9 ± 2.6 b | 541.2 ± 15.7 b |
H | 213.3 ± 5.7 b | 236.2 ± 3.6 c | 566.5 ± 21.3 b |
Week 17 | |||
C | 225.6 ± 6.9 a | 245.9 ± 4.6 a | 645.6 ± 16.6 a |
L | 236.6 ± 9.0 a | 251.5 ± 8.6 a | 655.5 ± 14.5 a |
M | 256.7 ± 9.2 a | 279.6 ± 3.7 b | 660.0 ± 13.6 a |
H | 288.3 ± 7.6 b | 291.6 ± 4.9 c | 682.5 ± 12.0 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anderson, M.G.; Johnson, A.M.; Clark, A.; Harrison, C.; Arguelles-Ramos, M.; Ali, A. Evaluation of Boron as a Feed Additive to Improve Musculoskeletal Health of Hy-Line W-36 Pullets. Poultry 2024, 3, 147-160. https://doi.org/10.3390/poultry3020012
Anderson MG, Johnson AM, Clark A, Harrison C, Arguelles-Ramos M, Ali A. Evaluation of Boron as a Feed Additive to Improve Musculoskeletal Health of Hy-Line W-36 Pullets. Poultry. 2024; 3(2):147-160. https://doi.org/10.3390/poultry3020012
Chicago/Turabian StyleAnderson, Mallory G., Alexa M. Johnson, Alexis Clark, Cerano Harrison, Mireille Arguelles-Ramos, and Ahmed Ali. 2024. "Evaluation of Boron as a Feed Additive to Improve Musculoskeletal Health of Hy-Line W-36 Pullets" Poultry 3, no. 2: 147-160. https://doi.org/10.3390/poultry3020012
APA StyleAnderson, M. G., Johnson, A. M., Clark, A., Harrison, C., Arguelles-Ramos, M., & Ali, A. (2024). Evaluation of Boron as a Feed Additive to Improve Musculoskeletal Health of Hy-Line W-36 Pullets. Poultry, 3(2), 147-160. https://doi.org/10.3390/poultry3020012