Deleterious Effects of Heat Stress on Poultry Production: Unveiling the Benefits of Betaine and Polyphenols
Abstract
:1. Advantages of Poultry Meat Production
2. High Stocking Density and Heat Stress
3. Impact of Global Warming
4. Thermoregulatory Responses
4.1. Physiological and Behavioral Responses
4.2. Biological Responses
5. Heat Stress Impairs Production
6. Solutions to Cope with Heat Stress
7. Nutritional Additives to Ameliorate Heat Stress
7.1. Macronutrients and Micronutrients
7.2. Betaine
7.3. Polyphenols
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Mottet, A.; Tempio, G. Global poultry production: Current state and future outlook and challenges. Worlds Poult. Sci. J. 2017, 73, 245–256. [Google Scholar] [CrossRef] [Green Version]
- Farrell, D. The Role of Poultry in Human Nutrition. Poultry Development Review; Food and Agriculture Organization: Rome, Italy, 2013; pp. 2–9. [Google Scholar]
- Wahyono, N.D.; Utami, M.M.D. A Review of the Poultry Meat Production Industry for Food Safety in Indonesia. J. Phys. Conf. Ser. 2018, 953, 012125. [Google Scholar] [CrossRef]
- Elijah, O.A.; Adedapo, A. The effect of climate on poultry productivity in Ilorin Kwara State, Nigeria. Int. J. Poult. 2006, 5, 1061–1068. [Google Scholar]
- Shakeri, M.; Zulkifli, I.; Soleimani, A.; O’Reilly, E.; Eckersall, P.; Anna, A.; Kumari, S.; Abdullah, F. Response to dietary supplementation of L-glutamine and L-glutamate in broiler chickens reared at different stocking densities under hot, humid tropical conditions. Poult. Sci. 2014, 93, 2700–2708. [Google Scholar] [CrossRef] [PubMed]
- Abudabos, A.M.; Samara, E.M.; Hussein, E.O.; Al-Ghadi, M.a.Q.; Al-Atiyat, R.M. Impacts of stocking density on the performance and welfare of broiler chickens. Ital. J. Anim. Sci. 2013, 12, e11. [Google Scholar] [CrossRef] [Green Version]
- Shakeri, M.; Oskoueian, E.; Najafi, P.; Ebrahimi, M. Impact of glutamine in drinking water on performance and intestinal morphology of broiler chickens under high stocking density. İstanbul Üniversitesi Veteriner Fakültesi Dergisi 2015, 42, 51–56. [Google Scholar] [CrossRef]
- Shakeri, M.; Shakeri, M.; Omidi, A. Effect of Garlic Supplementation to Diet on Performance and Intestinal Morphology of Broiler Chickens under High Stocking Density. İstanbul Üniversitesi Veteriner Fakültesi Dergisi 2014, 41, 212–217. [Google Scholar]
- Shakeri, M.; Oskoueian, E.; Le, H.H.; Shakeri, M. Strategies to combat heat stress in broiler chickens: Unveiling the roles of selenium, vitamin E and vitamin C. Vet. Sci. 2020, 7, 71. [Google Scholar] [CrossRef]
- Lara, L.; Rostagno, M. Impact of heat stress on poultry production. Animals 2013, 3, 356–369. [Google Scholar] [CrossRef]
- Mack, L.; Felver-Gant, J.; Dennis, R.; Cheng, H. Genetic variations alter production and behavioral responses following heat stress in 2 strains of laying hens. Poult. Sci. 2013, 92, 285–294. [Google Scholar] [CrossRef]
- Darras, V.M.; Van der Geyten, S.; Kühn, E.R. Thyroid hormone metabolism in poultry. Biotechnol. Agron. Soc. Environ. 2000, 4, 13–20. [Google Scholar]
- Bueno, J.P.R.; Gotardo, L.R.M.; Dos Santos, A.M.; Litz, F.H.; Olivieri, O.C.L.; Alves, R.L.O.R.; Moraes, C.A.; de Mattos Nascimento, M.R.B. Effect of cyclic heat stress on thyroidal hormones, thyroid histology, and performance of two broiler strains. Int. J. Biometeorol. 2020, 64, 1125–1132. [Google Scholar] [CrossRef] [PubMed]
- Lindsey, R.; Dahlman, L. Climate Change: Global Temperature. Climate.gov. Available online: https://www.climate.gov/news-features/understanding-climate/climate-change-global-temperature (accessed on 22 March 2021).
- Gregory, J.M.; White, N.J.; Church, J.A.; Bierkens, M.F.; Box, J.E.; Van den Broeke, M.R.; Cogley, J.G.; Fettweis, X.; Hanna, E.; Huybrechts, P. Twentieth-century global-mean sea level rise: Is the whole greater than the sum of the parts? J. Clim. 2013, 26, 4476–4499. [Google Scholar] [CrossRef] [Green Version]
- Garnett, T. Livestock-related greenhouse gas emissions: Impacts and options for policy makers. Environ. Sci. Policy 2009, 12, 491–503. [Google Scholar] [CrossRef]
- Wright, I.A.; Tarawali, S.; Blümmel, M.; Gerard, B.; Teufel, N.; Herrero, M. Integrating crops and livestock in subtropical agricultural systems. J. Sci. Food Agric. 2012, 92, 1010–1015. [Google Scholar] [CrossRef]
- Škrbić, Z.; Pavlovski, Z.; Lukić, M.; Perić, L.; Milošević, N. The effect of stocking density on certain broiler welfare parameters. Biotechnol. Anim. Husb. 2009, 25, 11–21. [Google Scholar] [CrossRef] [Green Version]
- Yahav, S.; Collin, A.; Shinder, D.; Picard, M. Thermal manipulations during broiler chick embryogenesis: Effects of timing and temperature. Poult. Sci. 2004, 83, 1959–1963. [Google Scholar] [CrossRef]
- Yahav, S.; Shinder, D.; Tanny, J.; Cohen, S. Sensible heat loss: The broiler’s paradox. Worlds Poult. Sci. J. 2005, 61, 419–434. [Google Scholar] [CrossRef]
- Yalcin, S.; Testik, A.; Ozkan, S.; Settar, P.; Celen, F.; Cahaner, A. Performance of naked neck and normal broilers in hot, warm, and temperate climates. Poult. Sci. 1997, 76, 930–937. [Google Scholar] [CrossRef]
- Suganya, T.; Senthilkumar, S.; Deepa, K.; Amutha, R. Nutritional management to alleviate heat stress in broilers. Int. J. Sci. Environ. Technol. 2015, 4, 661–666. [Google Scholar]
- Shakeri, M.; Cottrell, J.J.; Wilkinson, S.; Zhao, W.; Le, H.H.; McQuade, R.; Furness, J.B.; Dunshea, F.R. Dietary betaine improves intestinal barrier function and ameliorates the impact of heat stress in multiple vital organs as measured by evans blue dye in broiler chickens. Animals 2019, 10, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shakeri, M.; Cottrell, J.J.; Wilkinson, S.; Le, H.H.; Suleria, H.A.; Warner, R.D.; Dunshea, F.R. Dietary betaine reduces the negative effects of cyclic heat exposure on growth performance, blood gas status and meat quality in broiler chickens. Agriculture 2020, 10, 176. [Google Scholar] [CrossRef]
- Shakeri, M.; Cottrell, J.J.; Wilkinson, S.; Ringuet, M.; Furness, J.B.; Dunshea, F.R. Betaine and antioxidants improve growth performance, breast muscle development and ameliorate thermoregulatory responses to cyclic heat exposure in broiler chickens. Animals 2018, 8, 162. [Google Scholar] [CrossRef] [Green Version]
- Şahin, E.; Gümüşlü, S. Immobilization stress in rat tissues: Alterations in protein oxidation, lipid peroxidation and antioxidant defense system. Comp. Biochem. Phys. C 2007, 144, 342–347. [Google Scholar] [CrossRef] [PubMed]
- Song, D.; King, A. Effects of heat stress on broiler meat quality. Worlds Poult. Sci. J. 2015, 71, 701–709. [Google Scholar] [CrossRef]
- Cadenas, E.; Davies, K.J. Mitochondrial free radical generation, oxidative stress, and aging. Free. Radic. Biol. Med. 2000, 29, 222–230. [Google Scholar] [CrossRef]
- Lu, Z.; He, X.; Ma, B.; Zhang, L.; Li, J.; Jiang, Y.; Zhou, G.; Gao, F. Chronic heat stress impairs the quality of breast-muscle meat in broilers by affecting redox status and energy-substance metabolism. J. Agric. Food Chem. 2017, 65, 11251–11258. [Google Scholar] [CrossRef]
- Wang, R.; Liang, R.; Lin, H.; Zhu, L.; Zhang, Y.; Mao, Y.; Dong, P.; Niu, L.; Zhang, M.; Luo, X. Effect of acute heat stress and slaughter processing on poultry meat quality and postmortem carbohydrate metabolism. Poult. Sci. 2017, 96, 738–746. [Google Scholar] [CrossRef]
- Feng, J.; Zhang, M.; Zheng, S.; Xie, P.; Ma, A. Effects of high temperature on multiple parameters of broilers in vitro and in vivo. Poult. Sci. 2008, 87, 2133–2139. [Google Scholar] [CrossRef]
- Swennen, Q.; Decuypere, E.; Buyse, J. Implications of dietary macronutrients for growth and metabolism in broiler chickens. Worlds Poult. Sci. J. 2007, 63, 541–556. [Google Scholar] [CrossRef]
- Shakeri, M.; Cottrell, J.J.; Wilkinson, S.; Le, H.H.; Suleria, H.A.R.; Warner, R.D.; Dunshea, F.R. Growth Performance and Characterization of Meat Quality of Broiler Chickens Supplemented with Betaine and Antioxidants under Cyclic Heat Stress. Antioxidants 2019, 8, 336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lever, M.; Slow, S. The clinical significance of betaine, an osmolyte with a key role in methyl group metabolism. Clin. Biochem. 2010, 43, 732–744. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; He, F.; Wu, C.; Li, P.; Li, N.; Deng, J.; Zhu, G.; Ren, W.; Peng, Y. Betaine in inflammation: Mechanistic aspects and applications. Front. Immunol. 2018, 9, 1070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Virtanen, E. Piecing together the betaine puzzle. Feed Mix 1995, 3, 12–17. [Google Scholar]
- Kettunen, H.; Peuranen, S.; Tiihonen, K. Betaine aids in the osmoregulation of duodenal epithelium of broiler chicks, and affects the movement of water across the small intestinal epithelium in vitro. Comp. Biochem. Physiol. A 2001, 129, 595–603. [Google Scholar] [CrossRef]
- Ferket, P. Flushing Syndrome in Commercial Turkeys During the Grow-out Stage. In Proceedings of the Pacesetter Conference, National Turkey Federation Annual Meeting, Orlando, FL, USA, 10 January 1994; Smithkline Beecham Animal Health: Nutley, NJ, USA, 1995; pp. 5–14. [Google Scholar]
- Neuhofer, W.; Beck, F.-X. Cell survival in the hostile environment of the renal medulla. Annu. Rev. Physiol. 2005, 67, 531–555. [Google Scholar] [CrossRef]
- Panda, A.; Raju, M.; Rao, S.; Sunder, G. QPM improves performance, increases broiler meat yield. Poult. Int. 2010, 20–22. [Google Scholar]
- dos Santos, T.T.; Baal, S.C.S.; Lee, S.A.; e Silva, F.R.O.; Scheraiber, M.; da Silva, A.V.F. Influence of dietary fibre and betaine on mucus production and digesta and plasma osmolality of broiler chicks from hatch to 14 days of age. Livest. Sci. 2019, 220, 67–73. [Google Scholar] [CrossRef]
- Pacana, T.; Cazanave, S.; Verdianelli, A.; Patel, V.; Min, H.-K.; Mirshahi, F.; Quinlivan, E.; Sanyal, A.J. Dysregulated hepatic methionine metabolism drives homocysteine elevation in diet-induced nonalcoholic fatty liver disease. PLoS ONE 2015, 10, e0136822. [Google Scholar] [CrossRef] [Green Version]
- Craig, S.A. Betaine in human nutrition. Am. J. Clin. Nutr. 2004, 80, 539–549. [Google Scholar] [CrossRef] [Green Version]
- Borowczyk, K.; Wróblewski, J.; Suliburska, J.; Akahoshi, N.; Ishii, I.; Jakubowski, H. Mutations in homocysteine metabolism genes increase keratin N-homocysteinylation and damage in mice. Int. J. Genom. 2018, 2018, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alirezaei, M.; Khoshdel, Z.; Dezfoulian, O.; Rashidipour, M.; Taghadosi, V. Beneficial antioxidant properties of betaine against oxidative stress mediated by levodopa/benserazide in the brain of rats. J. Physiol. Sci. 2015, 65, 243–252. [Google Scholar] [CrossRef] [PubMed]
- Xie, M.; Tang, J.; Wen, Z.; Huang, W.; Hou, S. Effects of pyridoxine on growth performance and plasma aminotransferases and homocysteine of white Pekin ducks. Asian-Australas. J. Anim. Sci. 2014, 27, 1744. [Google Scholar] [CrossRef] [PubMed]
- Weisberg, I.S.; Park, E.; Ballman, K.V.; Berger, P.; Nunn, M.; Suh, D.S.; Breksa, A.P., III; Garrow, T.A.; Rozen, R. Investigations of a common genetic variant in betaine–homocysteine methyltransferase (BHMT) in coronary artery disease. Atherosclerosis 2003, 167, 205–214. [Google Scholar] [CrossRef]
- Hanje, A.J.; Fortune, B.; Song, M.; Hill, D.; McClain, C. The use of selected nutrition supplements and complementary and alternative medicine in liver disease. Nutr. Clin. Pract. 2006, 21, 255–272. [Google Scholar] [CrossRef] [Green Version]
- Muthukumar, K.; Rajakumar, S.; Sarkar, M.N.; Nachiappan, V. Glutathione peroxidase3 of Saccharomyces cerevisiae protects phospholipids during cadmium-induced oxidative stress. Antonie Van Leeuwenhoek 2011, 99, 761–771. [Google Scholar] [CrossRef]
- Ratriyanto, A.; Mosenthin, R. Osmoregulatory function of betaine in alleviating heat stress in poultry. J. Anim. Physiol. Anim. Nutr. 2018, 102, 1634–1650. [Google Scholar] [CrossRef]
- Liu, W.; Yuan, Y.; Sun, C.; Balasubramanian, B.; Zhao, Z.; An, L. Effects of dietary betaine on growth performance, digestive function, carcass traits, and meat quality in indigenous yellow-feathered broilers under long-term heat stress. Animals 2019, 9, 506. [Google Scholar] [CrossRef] [Green Version]
- Shakeri, M.; Cottrell, J.J.; Wilkinson, S.; Le, H.H.; Suleria, H.A.R.; Warner, R.D.; Dunshea, F.R. A Dietary Sugarcane-Derived Polyphenol Mix Reduces the Negative Effects of Cyclic Heat Exposure on Growth Performance, Blood Gas Status, and Meat Quality in Broiler Chickens. Animals 2020, 10, 1158. [Google Scholar] [CrossRef]
- Serra, V.; Salvatori, G.; Pastorelli, G. Dietary polyphenol supplementation in food producing animals: Effects on the quality of derived products. Animals 2021, 11, 401. [Google Scholar] [CrossRef]
- Brenes, A.; Viveros, A.; Chamorro, S.; Arija, I. Use of polyphenol-rich grape by-products in monogastric nutrition. A review. Anim. Feed Sci. Technol. 2016, 211, 1–17. [Google Scholar] [CrossRef]
- Landete, J. Dietary intake of natural antioxidants: Vitamins and polyphenols. Crit. Rev. Food Sci. Nutr. 2013, 53, 706–721. [Google Scholar] [CrossRef] [PubMed]
- Sies, H. Strategies of antioxidant defense. Eur. J. Biochem. 1993, 215, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Smith, P. Electronic Applications of the Smith Chart; The Institution of Engineering and Technology Country: London, UK, 1995. [Google Scholar]
- Masella, R.; Di Benedetto, R.; Varì, R.; Filesi, C.; Giovannini, C. Novel mechanisms of natural antioxidant compounds in biological systems: Involvement of glutathione and glutathione-related enzymes. J. Nutr. Biochem. 2005, 16, 577–586. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Sharma, U.; Sharma, A.; Pandey, A. Protective efficacy of Solanum xanthocarpum root extracts against free radical damage: Phytochemical analysis and antioxidant effect. Cell. Mol. Biol. 2012, 58, 171–178. [Google Scholar]
- Mishra, A.; Kumar, S.; Pandey, A.K. Scientific validation of the medicinal efficacy of Tinospora cordifolia. Sci. World J. 2013, 2013, 1–8. [Google Scholar]
- Paszkiewicz, M.; Budzyńska, A.; Różalska, B.; Sadowska, B. Immunomodulacyjna rola polifenoli roślinnych The immunomodulatory role of plant polyphenols. Postepy Hig. Med. Dosw. 2012, 66, 637–646. [Google Scholar] [CrossRef]
- Petti, S.; Scully, C. Polyphenols, oral health and disease: A review. J. Dent. 2009, 37, 413–423. [Google Scholar] [CrossRef]
- Zhang, C.; Zhao, X.; Wang, L.; Yang, L.; Chen, X.; Geng, Z. Resveratrol beneficially affects meat quality of heat-stressed broilers which is associated with changes in muscle antioxidant status. Animal Sci. J. 2017, 88, 1569–1574. [Google Scholar] [CrossRef]
- Hu, R.; He, Y.; Arowolo, M.A.; Wu, S.; He, J. Polyphenols as potential attenuators of heat stress in poultry production. Antioxidants 2019, 8, 67. [Google Scholar] [CrossRef] [Green Version]
- Majewska, M.; Czeczot, H. Flawonoidy w profilaktyce i terapii. Farmakol. Pol. 2009, 65, 369–377. [Google Scholar]
- Archivio, M.D.; Filesi, C.; Di Benedetto, R.; Gargiulo, R.; Giovannini, C.; Masella, R. Polyphenols, dietary sources and bioavailability. Annali-Istituto Superiore di Sanita 2007, 43, 348. [Google Scholar]
- Gopi, M.; Dutta, N.; Pattanaik, A.K.; Jadhav, S.E.; Madhupriya, V.; Tyagi, P.K.; Mohan, J. Effect of polyphenol extract on performance, serum biochemistry, skin pigmentation and carcass characteristics in broiler chickens fed with different cereal sources under hot-humid conditions. Saudi J. Biol. Sci. 2020, 27, 2719–2726. [Google Scholar] [CrossRef] [PubMed]
- Mazur-Kuśnirek, M.; Antoszkiewicz, Z.; Lipiński, K.; Kaliniewicz, J.; Kotlarczyk, S. The effect of polyphenols and vitamin E on the antioxidant status and meat quality of broiler chickens fed low-quality oil. Arch. Anim. Breed. 2019, 62, 287–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shakeri, M.; Le, H.H. Deleterious Effects of Heat Stress on Poultry Production: Unveiling the Benefits of Betaine and Polyphenols. Poultry 2022, 1, 147-156. https://doi.org/10.3390/poultry1030013
Shakeri M, Le HH. Deleterious Effects of Heat Stress on Poultry Production: Unveiling the Benefits of Betaine and Polyphenols. Poultry. 2022; 1(3):147-156. https://doi.org/10.3390/poultry1030013
Chicago/Turabian StyleShakeri, Majid, and Hieu Huu Le. 2022. "Deleterious Effects of Heat Stress on Poultry Production: Unveiling the Benefits of Betaine and Polyphenols" Poultry 1, no. 3: 147-156. https://doi.org/10.3390/poultry1030013
APA StyleShakeri, M., & Le, H. H. (2022). Deleterious Effects of Heat Stress on Poultry Production: Unveiling the Benefits of Betaine and Polyphenols. Poultry, 1(3), 147-156. https://doi.org/10.3390/poultry1030013