An In Vivo Pilot Study on Probiotic Potential of Lactic Acid Bacteria Isolated from the Gastrointestinal Tract of Creole Hens (Gallus gallus domesticus) Native to Montería, Córdoba, Colombia in Broiler Chickens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study and Sampling Location
2.2. Isolation and Characterization of Lactic Acid Bacteria
2.3. Effect of pH, Bile Salt, or NaCl Concentration on In Vitro Growth of Lactobacillus spp. Isolated from the Gastrointestinal Tract of Creole Hens
2.4. Biochemical Characterization
2.5. Determination of Antimicrobial Activity against Pathogenic Microorganisms
2.6. Propagation of Top Performing Candidates (LP-10. LP-40, LP-50) In Vitro
2.7. Identification of Lactobacillus spp. LP-40 Probiotic Candidate
2.8. Evaluation of the Effect of Lactobacillus salivarius LP-40 on 42-Day Performance in Broiler Chickens
2.8.1. Probiotic Preparation
2.8.2. Experimental Design
2.9. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gutierrez, M.A. Avicultura Colombiana Sostenida por la Eficiencia de Producción. Available online: https://avicultura.info/avicultura-colombiana-sostenida-por-eficiencia-produccion/ (accessed on 20 January 2022).
- FEDEGAN (Federación Colombiana de Ganaderos). Análisis del Inventario Ganadero Colombiano. Comportamiento y Variables Explicativas. Available online: http://www.fedegan.org.co/publicacion-presentaciones/analisis-del-inventario-ganadero-colombiano-comportamiento-y-variables (accessed on 7 January 2022).
- Mahmood, T.; Guo, Y. Dietary fiber and chicken microbiome interaction: Where will it lead to? Anim. Nutr. 2020, 6, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Interagency Coordination Group on Antimicrobial Resistance. No Time to Wait: Securing the Future from Drug-Resistant Infections. Report to the Secretary-General of the United Nations. 2019. Available online: https://www.who.int/docs/default-source/documents/no-time-to-wait-securing-the-future-from-drug-resistant-infections-en.pdf (accessed on 2 January 2022).
- FAO (Organización de las Naciones Unidas para la Alimentación y la Agricultura). El Futuro de la Alimentación y la Agricultura. Tendencias y Desafíos. Available online: https://www.fao.org/3/i6881s/i6881s.pdf (accessed on 12 January 2022).
- Gadde, U.; Kim, W.H.; Oh, S.T.; Lillehoj, H.S. Alternatives to antibiotics for maximizing growth performance and feed efficiency in poultry: A review. Anim. Health Res. Rev. 2017, 18, 26–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yaqoob, M.U.; Wang, G.; Wang, M. An updated review on probiotics as an alternative of antibiotics in poultry. Anim. Biosci. 2022, 35, 1109–1120. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Moore, R.J.; Stanley, D.; Chousalkar, K.K. The gut microbiota of laying hens and its manipulation with prebiotics and probiotics to enhance gut health and food safety. Appl. Environ. Microbiol. 2020, 86, e00600-20. [Google Scholar] [CrossRef]
- Wang, J.; Ishfaq, M.; Guo, Y.; Chen, C.; Li, J. Assessment of probiotic properties of Lactobacillus salivarius isolated from chickens as feed additives. Front. Vet. Sci. 2020, 7, 415. [Google Scholar] [CrossRef]
- Bergey, D.H.; Krieg, N.R.; Holt, J.G. Bergey’s Manual of Systematic Bacteriology; Williams & Wilkins: Baltimore, MD, USA, 1989; p. 2648. [Google Scholar]
- Kociubinski, G.; Pérez, P.; De Antoni, G. Screening of bile resistance and bile of precipitation in lactic acid bacteria and bifidobacteria. J. Food. Prot. 1999, 62, 905–912. [Google Scholar] [CrossRef]
- Rondón, A.J.; Samaniego, L.M.; Bocourt, R.; Rodríguez, S.; Milián, G.; Ranilla, M.; Laurencio, M.; Pérez, M. Isolation, identification and partial characterization of the probiotic properties of Lactobacillus sp. strains obtained from the gastrointestinal tract of broilers. Cienc. Tecnol. Aliment. 2008, 6, 56–63. [Google Scholar] [CrossRef] [Green Version]
- Schillinger, U.; Lücke, F.K. Antibacterial activity of Lactobacillus sake isolated from meat. Appl. Environ. Microbiol. 1989, 55, 1901–1906. [Google Scholar] [CrossRef] [Green Version]
- Mejía-Silva, W.; Rubio-Guillén, J.; Calatayud-Márquez, D.; Rodríguez-Caldera, A.; Quintero-Moreno, A. Evaluación de dos probióticos sobre parámetros productivos en lechones lactantes. Zootécnia Trop. 2007, 25, 301–306. [Google Scholar]
- Sanger, F.; Nicklen, S.; Coulson, A.R. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 1997, 74, 5463–5467. [Google Scholar] [CrossRef] [Green Version]
- Tamura, K.; Peterson, D.; Peterson, N.; Stecher, G.; Nei, M.; Kumar, S. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 2011, 28, 2731–2739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Betancur, C.; Rondón, A.J.; Martínez, Y.; Rodríguez, R. Formulation and characterization of a biopreparation with Lactobacillus plantarum CAM-6, from the gastrointestinal tract of Colombian native pigs. Cuban J. Agric. Sci. 2020, 54, 395–404. [Google Scholar]
- National Research Council. Nutrient Requirements of Poultry, 9th ed.; National Academy Press: Washington, DC, USA, 1994; p. 176. [Google Scholar]
- Gray, C.; Kinnear, P.R. IBM SPSS Statistics 21 Made Simple; Armonk: Nueva York, NY, USA, 2014; p. 688. [Google Scholar]
- Zar, J. Biostatistical Analysis, 2nd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 1984; p. 718. [Google Scholar]
- Betancur, C.; Rodríguez, L.A. Ligilactobacillus Salivarius Strain Betanci 16S Ribosomal RNA Gene, Partial Sequence. Available online: https://www.ncbi.nlm.nih.gov/nuccore/2102194576 (accessed on 15 January 2022).
- Glaasker, E.; Tjan, F.S.; Ter Steeg, P.F.; Konings, W.N.; Poolman, B. Physiological response of Lactobacillus plantarum to salt and nonelectrolyte stress. J. Bacteriol. 1998, 180, 4718–4723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsai, C.C.; Hsih, H.Y.; Chiu, H.H.; Lai, Y.Y.; Liu, J.H.; Yu, B.; Tsen, H.-Y. Antagonistic activity against Salmonella infection in vitro and in vivo for two Lactobacillus strains from swine and poultry. Int. J. Food Microbiol. 2005, 102, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Gilliland, S.E. Importance of bile tolerance in lactobacilli used as dietary adjunct. In Biotechnology in the Feed Industry; Lyons, T.P., Ed.; Alltech Feed Co.: Lexington, KY, USA, 1987; pp. 149–155. [Google Scholar]
- Hu, P.L.; Yuan, Y.H.; Yue, T.L.; Guo, C.F. Bile acid patterns in commercially available oxgall powders used for the evaluation of the bile tolerance ability of potential probiotics. PLoS ONE 2018, 13, e0192964. [Google Scholar] [CrossRef] [Green Version]
- Ávila, J.; Ávila, M.; Tovar, B.; Brizuela, M.; Perazzo, Y.; Hernández, H. Capacidad probiótica de cepas del Género Lactobacillus extraídas del tracto intestinal de animales de granja. Rev. Científica 2010, 20, 161–169. [Google Scholar]
- Kusada, H.; Kana, M.; Hideyuki, T. Identification of bile salt hydrolase and bile salt resistance in a probiotic bacterium Lactobacillus gasseri JCM1131T. Microorganisms 2021, 9, 1011. [Google Scholar] [CrossRef]
- Wang, Z.; Zeng, X.; Mo, Y.; Smith, K.; Guo, Y.; Lin, J. Identification and characterization of a bile salt hydrolase from Lactobacillus salivarius for development of novel alternatives to antibiotic growth promoters. Appl. Environ. Microbiol. 2012, 78, 8795–8802. [Google Scholar] [CrossRef] [Green Version]
- García-Hernández, Y.; Pérez Sánchez, T.; Boucourt, R.; Balcázar, J.L.; Nicoli, J.R.; Moreira-Silva, J. Isolation, characteri-zation and evaluation of probiotic lactic acid bacteria for potential use in animal production. Res. Vet. Sci. 2016, 108, 125–132. [Google Scholar] [CrossRef]
- Rondón, A.J. Obtención de Biopreparados a Partir de Lactobacilos Autóctonos del Tracto Digestivo de Pollos y Evaluación de su Efecto Probiótico en Estos Animales. Ph.D. Thesis, Instituto de Ciencia Animal, Mayabeque, Cuba, 2009. [Google Scholar]
- Chen, F.I.; Zhu, L.I.; Qiu, H.I.I. Isolation and probiotic potential of Lactobacillus salivarius an Pediococcus pentosaceus in specific pathogen free chickens. Braz. J. Poult. Sci. 2017, 19, 325–332. [Google Scholar] [CrossRef] [Green Version]
- Aleksandrzak-Piekarczyk, T.; Puzia, W.; Żylińska, J.; Cieśla, J.; Gulewicz, K.A.; Bardowski, J.K.; Górecki, R.K. Potential of Lactobacillus plantarum IBB3036 and Lactobacillus salivarius IBB3154 to persistence in chicken after in ovo delivery. Micro-Biologyopen 2019, 8, e00620. [Google Scholar] [CrossRef]
- Ma, Y.; Xu, Z.; You, P. Adhesion of some bacteria to broiler intestinal mucus. ACTA Microbiol. Sin. 2004, 44, 361–364. [Google Scholar]
- Connors, J.; Dawe, N.; Van Limbergen, J. The role of succinate in the regulation of intestinal inflammation. Nutrients 2019, 11, 25. [Google Scholar] [CrossRef] [Green Version]
- Xu, M.; Jiang, Z.; Wang, C.; Li, N.; Bo, L.; Zha, Y.; Bian, J.; Zhang, Y.; Deng, X. Acetate attenuates inflammasome activation through GPR43-mediated Ca2+-dependent NLRP3 ubiquitination. Exp. Mol. Med. 2019, 51, 1–13. [Google Scholar] [CrossRef]
- Sobrino, O.J.; Alba, C.; Arroyo, R.; Pérez, I.; Sariego, L.; Delgado, S.; Fernández, L.; de María, J.; Fumanal, P.; Fumanal, A.; et al. Replacement of metaphylactic antimicrobial therapy by oral administration of Ligilactobacillus sali-varius MP100 in a pig farm. Front. Vet. Sci. 2021, 8, 666887. [Google Scholar] [CrossRef]
- Rondón, A.J.; González, J.; Rodríguez, M.; Milián, G.; Martínez, M.; Beruvides, A.; Valdivia, A.; Vera, R. In vitro metabolic activity of Lactobacillus salivarius and its effect on productive and health indicators of lactating calves. Cuban J. Agr. Sci. 2020, 54, 1–13. [Google Scholar]
- Menconi, A.; Kallapura, G.; Latorre, J.D.; Morgan, M.J.; Pumford, N.R.; Hargis, B.M.; Tellez, G. Identification and characterization of lactic acid bacteria in a commercial probiotic culture. Biosci. Microbiota Food Health 2014, 33, 25–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flynn, S.; van Sinderen, D.; Thornton, G.M.; Holo, H.; Nes, I.F.; Collins, J.K. Characterization of the genetic locus responsible for the production of ABP-118, a novel bacteriocin produced by the probiotic bacterium Lactobacillus salivarius subsp. salivarius UCC118. Microbiology 2002, 573, 973–984. [Google Scholar] [CrossRef] [Green Version]
- Seo, H.; Bae, S.; Oh, T. In vitro: Antimicrobial effect of Lactobacillus salivarius on Staphylococcus pseudintermedius. J. Vet. Clin. 2019, 36, 98–101. [Google Scholar] [CrossRef]
- Pineda-Quiroga, C.; Borda-Molina, D.; Chaves-Moreno, D.; Ruiz, R.; Atxaeran-dio, R.; Camarinha-Silva, A.; Gar-cía-Rodríguez, A. Microbial and functional profile of the ceca from laying hens affected by feeding prebiotics, probiotics, and synbiotics. Microorganisms 2019, 7, 123. [Google Scholar] [CrossRef] [Green Version]
- Segura, A.; De Bloss, M. La alternativa a los promotores del crecimiento. In Proceedings of the En Memorias del III Congreso Nacional de Avicultura, Varadero, Cuba, 18–20 June 2000. [Google Scholar]
- Nazef, L.; Belguesmia, Y.; Tani, A.; Prévost, H.; Drider, D. Identification of lactic acid bacteria from poultry feces: Evidence on anti-Campylobacter and anti-Listeria activities. Poult. Sci. 2008, 87, 329. [Google Scholar] [CrossRef] [PubMed]
- Shokryazdan, P.; Faseleh Jahromi, M.; Liang, J.B.; Ramasamy, K.; Sieo, C.C.; Ho, Y.W. Effects of a Lactobacillus salivarius mixture on performance, intestinal health and serum lipids of broiler chickens. PLoS ONE 2017, 12, e0175959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sureshkumar, S.; Lee, H.C.; Jung, S.K.; Kim, D.; Oh, K.B.; Yang, H.; Jo, Y.J.; Lee, H.S.; Lee, S.; Byun, S.J. Inclusion of Lactobacillus salivarius strain revealed a positive effect on improving growth performance, fecal microbiota and immunological responses in chicken. Arch. Microbiol. 2021, 203, 847–853. [Google Scholar] [CrossRef] [PubMed]
Ingredients (%) | Starter (0–14 d) | Grower (15–28 d) | Finisher (29–42 d) |
---|---|---|---|
Corn flour | 42.43 | 54.32 | 60.27 |
Soybean meal | 43.88 | 33.68 | 28.58 |
Sunflower oil | 8.80 | 7.28 | 6.52 |
Calcium phosphate | 2.57 | 2.45 | 2.39 |
Calcium carbonate | 0.74 | 0.72 | 0.25 |
Common salt | 0.25 | 0.25 | 0.25 |
Methionine DL | 0.33 | 0.30 | 0.29 |
Vitamin-mineral premix * | 1.00 | 1.00 | 1.00 |
Nutritional contributions (%) | |||
Crude protein | 23.00 | 20.00 | 18.80 |
Metabolizable energy (ME/kg) | 13.38 | 13.38 | 13.38 |
Calcium | 0.95 | 0.95 | 0.95 |
Available phosphorus | 0.42 | 0.42 | 0.42 |
Methionine + cysteine | 0.92 | 0.87 | 0.82 |
Isolate | Macroscopic Observation | Microscopic Observation | Gram Stain | Oxidase | Catalase |
---|---|---|---|---|---|
LP-10 | White, convex colonies with regular borders | bacilli | + | − | − |
LP-20 | Cream colonies, transparent with irregular borders | bacilli | + | − | − |
LP-30 | White colonies, flat with irregular borders | bacilli | + | − | − |
LP-40 | Yellow colonies, convex surfaces with regular edges | bacilli | + | − | − |
LP-50 | Cream colonies, convex with defined borders | bacilli | + | − | − |
LP-60 | Flat white colonies with convex surface and regular edges | bacilli | + | − | − |
LP-70 | White colonies, flat surface with regular edges | bacilli | + | − | − |
LP-80 | Cream colonies, flat surface with regular edges | bacilli | + | − | − |
LP-90 | Transparent yellow colonies with defined borders | bacilli | + | − | − |
Isolate | pH | Bile Salts (%) | NaCl (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
3 | 4 | 5.6 | 6.5 | 0.05 | 0.10 | 0.15 | 0.30 | 2 | 4 | 7 | 10 | |
LP-10 | 2.80 | 5.30 | 9.30 | 11.23 | 10.66 | 10.32 | 10.44 a | 8.76 b | 10.33 | 8.44 | 6.17 | 5.16 |
LP-20 | 2.33 | 5.30 | 9.48 | 10.22 | 10.42 | 10.44 | 8.24 c | 6.58 d | 10.53 | 8.23 | 6.18 | 5.21 |
LP-30 | 2.45 | 5.80 | 9.56 | 10.34 | 10.34 | 10.28 | 9.66 b | 6.74 d | 10.22 | 8.12 | 6.22 | 5.16 |
LP-40 | 2.20 | 5.20 | 9.66 | 11.46 | 10.30 | 10.22 | 10.88 a | 9.48 a | 10.20 | 8.58 | 6.45 | 5.45 |
LP-50 | 2.33 | 5.66 | 9.45 | 11.24 | 10.26 | 10.11 | 10.73 a | 8.46 b | 10.12 | 8.49 | 6.12 | 5.32 |
LP-60 | 2.42 | 5.88 | 9.68 | 10.86 | 10.62 | 10.53 | 8.54 c | 7.78 c | 10.22 | 8.33 | 6.35 | 5.12 |
LP-70 | 2.52 | 5.48 | 9.64 | 10.23 | 10.14 | 10.48 | 8.46 c | 7.88 c | 10.04 | 8.65 | 6.18 | 5.18 |
LP-80 | 2.40 | 5.33 | 9.34 | 10.33 | 10.22 | 10.36 | 8.33 c | 7.56 c | 10.11 | 8.27 | 6.21 | 5.22 |
LP-90 | 2.54 | 5.46 | 9.48 | 10.48 | 10.34 | 10.25 | 8.12 c | 7.66 c | 10.22 | 8.51 | 6.19 | 5.34 |
SEM | 0.154 | 0.130 | 0.090 | 0.092 | 0.126 | 0.932 | 0.863 | 0.546 | 0.179 | 0.812 | 0.953 | 0.122 |
p-value | 0.479 | 0.315 | 0.489 | 0.769 | 0.423 | 0.061 | 0.031 | 0.006 | 0.100 | 0.121 | 0.063 | 0.078 |
Carbohydrates | LP-10 | LP-40 | LP-50 |
---|---|---|---|
0. Control | − | − | − |
1. Glycerol | − | − | − |
2. Erythrol | − | − | − |
3. D-arabinose | − | − | − |
4. L-arabinose | + | + | + |
5. Ribose | + | + | − |
6. D-xylose | + | + | − |
7. L-xylose | − | − | − |
8. Adonitol | − | − | − |
9. α-Methyl-d-xyloside | − | − | − |
10. Galactose | + | + | − |
11. Glucose | + | + | − |
12. Fructose | + | + | − |
13. Mannose | + | + | − |
14. Sorbose | − | − | − |
15. Rhamnose | − | − | − |
16. Dulcitol | − | − | − |
17. Inositol | − | − | − |
18. Mannitol | − | − | − |
19. Sorbitol | + | + | − |
20. α-Metil-d-mannoside | − | − | − |
21. α-Methyl-d-glucoside | − | − | − |
22. N-Acetyl-glucosamine | + | + | − |
23. Amygdaline | + | + | − |
24. Arbutin | − | − | − |
25. Esculin | − | − | + |
26. Salicin | + | − | − |
27. Cellobiose | − | + | + |
28. Maltose | + | + | − |
29. Lactose | − | + | + |
30. Melibiose | + | + | − |
31. Sucrose | + | + | + |
32. Trehalose | + | + | − |
33. Inulin | − | − | − |
34. Melezitose | − | − | − |
35. Raffinose | − | − | − |
36. Starch | − | − | − |
37. Glycogen | − | − | − |
38. Xylitol | − | + | − |
39. α-Gentiobiose | + | + | − |
40. D-turanose | − | − | − |
41. D-xylose | − | − | − |
42. D-tagatose | − | − | − |
43. D-fucose | − | − | − |
44. L-fucose | − | − | − |
45. D-arabitol | − | − | − |
46. L-arabitol | − | − | − |
47. Gluconate | + | + | − |
48. 2-Ketogluconate | − | − | − |
49. 5-Ketogluconate | − | − | − |
LP-10 | LP-40 | LP-50 | SEM | p-Value | |
---|---|---|---|---|---|
Indicator | Level of resistance (%) 1 | ||||
%R pH (3) | 54 b | 60 a | 52 b | 1.342 | 0.012 |
bile salts (0.3%) | 17 b | 47 a | 23 b | 1.254 | 0.004 |
In vitro growth | Log10 CFU/mL | ||||
%R pH (3) | 11.3 b | 12.4 a | 11.2 b | 1.420 | 0.001 |
Pathogen, strain | Inhibition halo 1 (mm) | ||||
Escherichia coli, NBRC 102203 | 8.4 b | 12.3 a | 5.3 b | 0.320 | 0.007 |
Salmonella Typhimurium, 4,5,12:i:- | 6.7 b | 13.7 a | 0.0 c | 0.373 | 0.001 |
Klebsiella pneumoniae, ATCC® BAA-1705D-5 ™ | 2.6 | 4.3 | 3.9 | 0.221 | 0.674 |
Staphylococcus aureus, ATCC® 29737 | 3.8 | 4.3 | 5.0 | 0.378 | 0.886 |
Parameters | T0 | T1 | T2 | SEM | p-Value |
---|---|---|---|---|---|
Live weight (g) | |||||
0 | 48.50 | 48.50 | 48.50 | 0.43 | 0.12 |
7 | 178.75 b | 184.00 a | 185.75 a | 0.13 | 0.04 |
14 | 464.25 b | 471.25 b | 492.75 a | 0.31 | 0.02 |
21 | 941.75 b | 955.75 b | 981.50 a | 0.23 | 0.04 |
28 | 1531.25 b | 1517.50 b | 1620.75 a | 0.27 | 0.02 |
35 | 2185.00 b | 2242.50 b | 2356.50 a | 0.42 | 0.03 |
42 | 2857.50 b | 2871.25 b | 3002.50 a | 0.54 | 0.01 |
Feed intake (g) | |||||
0–42 d | 4758.00 | 4774.00 | 4831.00 | 1.89 | 0.426 |
Feed conversion ratio | |||||
0–42 d | 1.66 b | 1.66 b | 1.61 a | 0.42 | 0.013 |
Cumulative mortality | |||||
0–42 d | 9/100 (9%) | 7/100 (7%) | 4/100 (4%) | - | ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Betancur-Hurtado, C.A.; Barreto Lopez, L.M.; Rondon Castillo, A.J.; Trujillo-Peralta, M.C.; Hernandez-Velasco, X.; Tellez-Isaias, G.; Graham, B.D. An In Vivo Pilot Study on Probiotic Potential of Lactic Acid Bacteria Isolated from the Gastrointestinal Tract of Creole Hens (Gallus gallus domesticus) Native to Montería, Córdoba, Colombia in Broiler Chickens. Poultry 2022, 1, 157-168. https://doi.org/10.3390/poultry1030014
Betancur-Hurtado CA, Barreto Lopez LM, Rondon Castillo AJ, Trujillo-Peralta MC, Hernandez-Velasco X, Tellez-Isaias G, Graham BD. An In Vivo Pilot Study on Probiotic Potential of Lactic Acid Bacteria Isolated from the Gastrointestinal Tract of Creole Hens (Gallus gallus domesticus) Native to Montería, Córdoba, Colombia in Broiler Chickens. Poultry. 2022; 1(3):157-168. https://doi.org/10.3390/poultry1030014
Chicago/Turabian StyleBetancur-Hurtado, César A., Luis Miguel Barreto Lopez, Ana Julia Rondon Castillo, Maria C. Trujillo-Peralta, Xochitl Hernandez-Velasco, Guillermo Tellez-Isaias, and Brittany D. Graham. 2022. "An In Vivo Pilot Study on Probiotic Potential of Lactic Acid Bacteria Isolated from the Gastrointestinal Tract of Creole Hens (Gallus gallus domesticus) Native to Montería, Córdoba, Colombia in Broiler Chickens" Poultry 1, no. 3: 157-168. https://doi.org/10.3390/poultry1030014
APA StyleBetancur-Hurtado, C. A., Barreto Lopez, L. M., Rondon Castillo, A. J., Trujillo-Peralta, M. C., Hernandez-Velasco, X., Tellez-Isaias, G., & Graham, B. D. (2022). An In Vivo Pilot Study on Probiotic Potential of Lactic Acid Bacteria Isolated from the Gastrointestinal Tract of Creole Hens (Gallus gallus domesticus) Native to Montería, Córdoba, Colombia in Broiler Chickens. Poultry, 1(3), 157-168. https://doi.org/10.3390/poultry1030014