Unequal Burdens: Exploring Racial Disparities in Cardiovascular and SLE Outcomes Using National Inpatient Database 2016–2021
Abstract
1. Introduction
2. Methods
2.1. Study Design and Data Source
2.2. Study Population and Variables
2.3. Outcomes
2.4. Statistical Analyses
2.5. Ethical Considerations
3. Results
3.1. Demographic and Socioeconomic Characteristics
3.2. Hospital and Regional Characteristics (Figure 2)
3.3. Comorbidities (Figure 3)
3.4. Clinical Outcomes
3.4.1. Overall Mortality and Cardiovascular Outcomes (Figure 4)
3.4.2. SLE-Specific Cardiac, Pulmonary, and Renal Manifestations
3.4.3. Healthcare Utilization: Length of Stay and Total Charges
4. Discussion
5. Implications for Clinical Practice and Policy
6. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Justiz Vaillant, A.A.; Goyal, A.; Varacallo, M.A. Systemic Lupus Erythematosus. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- González, L.A.; Toloza, S.M.; McGwin, G., Jr.; Alarcón, G.S. Ethnicity in systemic lupus erythematosus (SLE): Its influence on susceptibility and outcomes. Lupus 2013, 22, 1214–1224. [Google Scholar] [CrossRef]
- Maningding, E.; Dall’Era, M.; Trupin, L.; Murphy, L.B.; Yazdany, J. Racial and Ethnic Differences in the Prevalence and Time to Onset of Manifestations of Systemic Lupus Erythematosus: The California Lupus Surveillance Project. Arthritis Care Res. 2020, 72, 622–629. [Google Scholar] [CrossRef] [PubMed]
- Siegel, C.H.; Sammaritano, L.R. Systemic Lupus Erythematosus: A Review. JAMA 2024, 331, 1480–1491. [Google Scholar] [CrossRef] [PubMed]
- Hocaoglu, M.; Valenzuela-Almada, M.O.; Dabit, J.Y.; Osei-Onomah, S.A.; Chevet, B.; Giblon, R.E. Incidence, Prevalence, and Mortality of Lupus Nephritis: A Population-Based Study Over Four Decades Using the Lupus Midwest Network. Arthritis Rheumatol. 2023, 75, 567–573. [Google Scholar] [CrossRef] [PubMed]
- Alghareeb, R.; Hussain, A.; Maheshwari, M.V.; Khalid, N.; Patel, P.D. Cardiovascular Complications in Systemic Lupus Erythematosus. Cureus 2022, 14, e26671. [Google Scholar] [CrossRef]
- Wang, T.K.M.; Chan, N.; Khayata, M.; Flanagan, P.; Grimm, R.A.; Griffin, B.P.; Husni, E.M.; Littlejohn, E.; Xu, B. Abstract 13131: Cardiovascular Manifestations and Outcomes in Systemic Lupus Erythematosus: The Cleveland Clinic Contemporary Experience. Circulation 2020, 142 (Suppl. 3). [Google Scholar] [CrossRef]
- Moder, K.G.; Miller, T.D.; Tazelaar, H.D. Cardiac involvement in systemic lupus erythematosus. Mayo Clin. Proc. 1999, 74, 275–284. [Google Scholar] [CrossRef]
- Advancing Health Equity in Lupus [Lupus Foundation of America]. Available online: https://www.lupus.org/health-disparities (accessed on 19 January 2025).
- Garg, S.; Bartels, C.M.; Bao, G.; Helmick, C.G.; Drenkard, C.; Lim, S.S. Timing and Predictors of Incident Cardiovascular Disease in Systemic Lupus Erythematosus: Risk Occurs Early and Highlights Racial Disparities. J. Rheumatol. 2023, 50, 84–92. [Google Scholar] [CrossRef]
- Lim, S.S.; Helmick, C.G.; Bao, G.; Hootman, J.; Bayakly, R.; Gordon, C.; Drenkard, C. Racial Disparities in Mortality Associated with Systemic Lupus Erythematosus—Fulton and DeKalb Counties, Georgia, 2002–2016. MMWR Morb. Mortal. Wkly. Rep. 2019, 68, 419–422. [Google Scholar] [CrossRef]
- Healthcare Cost and Utilization Project (HCUP). Overview of the National (Nationwide) Inpatient Sample (NIS); Agency for Healthcare Research and Quality: Rockville, MD, US. Available online: https://www.ahrq.gov/data/hcup/index.html (accessed on 21 March 2025).
- Libby, P.; Ridker, P.M.; Maseri, A. Inflammation and atherosclerosis. Circulation 2002, 105, 1135–1143. [Google Scholar] [CrossRef]
- Esdaile, J.M.; Abrahamowicz, M.; Grodzicky, T.; Li, Y.; Panaritis, C.; Berger, R.D.; Côté, R.; Grover, S.A.; Fortin, P.R.; Clarke, A.E.; et al. Traditional Framingham risk factors fail to fully account for accelerated atherosclerosis in systemic lupus erythematosus. Arthritis Rheum. 2001, 44, 2331–2337. [Google Scholar] [CrossRef]
- Singh, J.A.; Cleveland, J.D. Hospitalized Infections in Lupus: A Nationwide Study of Types of Infections, Time Trends, Health Care Utilization, and In-Hospital Mortality. Arthritis Rheumatol. 2021, 73, 617–630. [Google Scholar] [CrossRef]
- Lim, S.S.; Drenkard, C. Understanding lupus disparities through a social Determinants of Health framework. Rheum. Dis. Clin. N. Am. 2020, 46, 613–621. [Google Scholar] [CrossRef] [PubMed]
- Demas, K.L.; Costenbader, K.H. Disparities in lupus care and outcomes. Curr. Opin. Rheumatol. 2009, 21, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Mccarty, D.J.; Manzi, S.; Medsger, T.A.; Ramsey-Goldman, R.; Laporte, R.E.; Kwoh, C.K. Incidence of systemic lupus erythematosus race and gender differences. Arthritis Rheum. 1995, 38, 1260–1270. [Google Scholar] [CrossRef] [PubMed]
- Pons-Estel, G.J.; Alarcón, G.S.; Scofield, L.; Reinlib, L.; Cooper, G.S. Understanding the epidemiology and progression of systemic lupus erythematosus. Semin. Arthritis Rheum. 2009, 39, 257–268. [Google Scholar] [CrossRef]
- Feldman, C.H.; Hiraki, L.T.; Liu, J.; Fischer, M.A.; Solomon, D.H.; Alarcón, G.S.; Winkelmayer, W.C.; Costenbader, K.H. Epidemiology and sociodemographics of systemic lupus erythematosus and lupus nephritis among US adults with Medicaid coverage, 2000–2004. Arthritis Rheum. 2012, 65, 753–763. [Google Scholar] [CrossRef]
- Somers, E.C.; Marder, W.; Cagnoli, P.; Lewis, E.E.; DeGuire, P.; Gordon, C.; Helmick, C.G.; Wang, L.; Wing, J.J.; Dhar, J.P.; et al. Population-Based Incidence and Prevalence of Systemic Lupus Erythematosus: The Michigan Lupus Epidemiology and Surveillance Program. Arthritis Rheumatol. 2014, 66, 369–378. [Google Scholar] [CrossRef]
- Hasan, B.; Fike, A.; Hasni, S. Health disparities in systemic lupus erythematosus—A narrative review. Clin. Rheumatol. 2022, 41, 3299–3311. [Google Scholar] [CrossRef]
- Julian, L.J.; Yelin, E.; Yazdany, J.; Panopalis, P.; Trupin, L.; Criswell, L.A.; Katz, P. Depression, medication adherence, and service utilization in systemic lupus erythematosus†. Arthritis Rheum. 2009, 61, 240–246. [Google Scholar] [CrossRef]
- Anderson, E.; Nietert, P.J.; Kamen, D.L.; Gilkeson, G.S. Ethnic disparities among patients with systemic lupus erythematosus in South Carolina. J. Rheumatol. 2008, 35, 819–825. [Google Scholar]
- Scalzi, L.V.; Hollenbeak, C.S.; Wang, L. Racial disparities in age at time of cardiovascular events and cardiovascular-related death in patients with systemic lupus erythematosus. Arthritis Rheum. 2010, 62, 2767–2775. [Google Scholar] [CrossRef]
- Mittal, S.; Siva, C. Incidence of Atrial Fibrillation and Related Outcomes among Hospitalized Patients with Systemic Lupus Erythematosus: Analysis of United States Nationwide Inpatient Sample Database 2016–2019. J. Clin. Med. 2024, 13, 1675. [Google Scholar] [CrossRef] [PubMed]
- Dein, E.; Douglas, H.; Petri, M.; Law, G.; Timlin, H. Pericarditis in Lupus. Cureus 2019, 11, e4166. [Google Scholar] [CrossRef] [PubMed]
- Vina, E.R.; Hausmann, L.R.M.; Utset, T.O.; Masi, C.M.; Liang, K.P.; Kwoh, C.K. Perceptions of racism in healthcare among patients with systemic lupus erythematosus: A cross-sectional study. Lupus Sci. Med. 2015, 2, e000110. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.I.; Lee, K.H.; Park, S.; Yang, J.W.; Kim, H.J.; Song, K.; Lee, S.; Na, H.; Jang, Y.J.; Nam, J.Y.; et al. Systemic Lupus Erythematosus and Lung Involvement: A Comprehensive Review. J. Clin. Med. 2022, 11, 6714. [Google Scholar] [CrossRef]
- DeQuattro, K.; Trupin, L.; Murphy, L.B.; Rush, S.; Criswell, L.A.; Lanata, C.M.; Dall’ERa, M.; Katz, P.; Yazdany, J. High disease severity among Asian patients in a US multiethnic cohort of individuals with systemic lupus erythematosus. Arthritis Care Res. 2020, 74, 896–903. [Google Scholar] [CrossRef]
- Yin, R.; Qui, C.X.; Yin, L.J.; Zhang, Y. Multiple spontaneous intracranial hemorrhages in a patient with systemic lupus erythematosus: A case report. Int. J. Clin. Exp. Med. 2019, 12, 10900–10904. [Google Scholar]
- Shen, A.Y.; Yao, J.F.; Brar, S.S.; Jorgensen, M.B.; Chen, W. Racial/ethnic differences in the risk of intracranial hemorrhage among patients with atrial fibrillation. J. Am. Coll. Cardiol. 2007, 50, 309–315. [Google Scholar] [CrossRef]
- Kittner, S.J.; Sekar, P.; Comeau, M.E.; Anderson, C.D.; Parikh, G.Y.; Tavarez, T.; Flaherty, M.L.; Testai, F.D.; Frankel, M.R.; James, M.L.; et al. Ethnic and racial variation in intracerebral hemorrhage risk factors and risk factor burden. JAMA Netw. Open. 2021, 4, e2121921. [Google Scholar] [CrossRef]
- Barbhaiya, M.; Feldman, C.H.; Guan, H.; Chen, S.K.; Fischer, M.A.; Solomon, D.H.; Everett, B.M.; Costenbader, K.H. Racial/ethnic variation in stroke rates and risks among patients with systemic lupus erythematosus. Semin. Arthritis Rheum. 2018, 48, 840–846. [Google Scholar] [CrossRef]
- Musa, R.; Rout, P.; Qurie, A. Lupus Nephritis. [Updated 2025 Jan 16]. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK499817/ (accessed on 21 March 2025).
White | Black | Hispanic | Asian | Native | Other | p Value | |
---|---|---|---|---|---|---|---|
Number of patients | 514,750 | 321,395 | 146,600 | 26,120 | 7350 | 29,215 | <0.001 |
Male | 12.12% | 10.69% | 11.93% | 13.52% | 11.50% | 12.15% | |
Female by % | 87.88% | 89.31% | 88.07% | 86.48% | 88.50% | 87.85% | |
Females by number | 452,255 | 286,985 | 129,115 | 22,585 | 6505 | 25,665 | |
Mean age (Years) | 58.02591 | 47.16161 | 45.83235 | 46.60107 | 50.01973 | 48.53397 | |
Median Household Income | <0.001 | ||||||
0–25th percentile | 129,875 (25.57%) | 158,590 (50.14%) | 53,480 (36.99%) | 3490 (13.48%) | 3300 (47.48%) | 8575 (29.9%) | |
26th–50th percentile | 138,535 (27.27%) | 71,380 (22.57%) | 37,100 (25.66%) | 4740 (18.30%) | 1815 (26.12%) | 6390 (22.28%) | |
51st–75th percentile | 128,055 (25.21%) | 53,525 (16.92%) | 33,605 (23.24%) | 6875 (26.55%) | 1275 (18.35%) | 6705 (23.28%) | |
76th–100th percentile | 111,545 (21.96%) | 32,770 (10.36%) | 20,410 (14.12%) | 10,790 (41.67%) | 560 (8.06%) | 7010 (24.44%) | |
Hospital Teaching Status | <0.001 | ||||||
Rural | 44,280 (8.6%) | 11,465 (3.57%) | 2640 (1.8%) | 365 (1.4%) | 1204 (16.39%) | 584 (2%) | |
Urban non-teaching | 108,014 (20.98%) | 44,445 (13.83%) | 25,850 (17.63%) | 4059 (15.54%) | 804 (10.95%) | 4930 (16.87%) | |
Urban teaching | 362,454 (70.41%) | 265,485 (82.6%) | 118,109 (80.57%) | 21,695 (83.06%) | 5340 (72.65%) | 23,700 (81.12%) | |
Hospital Bed Size | <0.001 | ||||||
Small | 106,850 (20.76%) | 55,115 (17.15%) | 24,615 (16.79%) | 3960 (15.16%) | 1345 (18.3%) | 4910 (16.81%) | |
Medium | 142,560 (27.69%) | 85,335 (26.55%) | 41,265 (28.15%) | 5820 (22.28%) | 1500 (20.41%) | 8895 (30.45%) | |
Large | 265,340 (51.55%) | 180,945 (56.3%) | 80,720 (55.06%) | 16,340 (62.56%) | 4505 (61.29%) | 15,410 (52.75%) | |
Region of Hospital | <0.001 | ||||||
Northeast | 94,485 (18.36%) | 52,540 (16.35%) | 26,815 (18.29%) | 4385 (16.79%) | 395 (5.37%) | 10,030 (34.33%) | |
Midwest | 117,510 (22.83%) | 67,905 (21.13%) | 10,725 (7.32%) | 2975 (11.39%) | 1635 (22.24%) | 2820 (9.65%) | |
South | 215,920 (41.95%) | 171,940 (53.5%) | 54,320 (37.05%) | 4730 (18.11%) | 2440 (33.2%) | 10,730 (36.73%) | |
West | 86,835 (16.87%) | 29,010 (9.03%) | 54,740 (37.34%) | 14,030 (53.71%) | 2880 (39.18%) | 5635 (19.29%) | |
Insurance Status | <0.001 | ||||||
Medicare | 285,760 (55.57%) | 152,035 (47.36%) | 51,960 (35.48%) | 8855 (33.93%) | 3035 (41.52%) | 11,125 (38.11%) | |
Medicaid | 67,600 (13.14%) | 83,805 (26.1%) | 47,965 (32.75%) | 5765 (22.09%) | 2295 (31.4%) | 7360 (25.21%) | |
Private insurance | 137,880 (26.81%) | 68,060 (21.2%) | 35,080 (23.95%) | 10,245 (39.26%) | 1500 (20.52%) | 8545 (29.27%) | |
Self-pay | 11,380 (2.21%) | 10,165 (3.17%) | 7425 (5.07%) | 610 (2.34%) | 205 (2.8%) | 1215 (4.16%) | |
Charlson Comorbidity Index | <0.001 | ||||||
Mild (Score 1–2) | 143,190 (27.82%) | 72,115 (22.44%) | 44,250 (30.18%) | 8535 (32.68%) | 1780 (24.22%) | 9595 (32.84%) | |
Moderate (Score 3–4) | 113,605 (22.07%) | 53,765 (16.73%) | 25,805 (17.6%) | 3665 (14.03%) | 1290 (17.55%) | 5585 (19.12%) | |
Severe (Score ≥ 5) | 257,955 (50.11%) | 195,515 (60.83%) | 76,545 (52.21%) | 13,920 (53.29%) | 428 0(58.23%) | 14,035 (48.04%) | |
Comorbidities | |||||||
Dyslipidemia | 163,785 (31.82%) | 78,950 (24.56%) | 32,965 (22.49%) | 6850 (26.23%) | 1650 (22.45%) | 6825 (23.36%) | <0.001 |
Diabetes | 111,925 (21.74%) | 74,390 (23.15%) | 32,910 (22.45%) | 4325 (16.56%) | 2090 (28.44%) | 5965 (20.42%) | <0.001 |
Obesity | 102,670 (19.95%) | 67,720 (21.07%) | 26,350 (17.97%) | 1810 (6.93%) | 1455 (19.8%) | 4420 (15.13%) | <0.001 |
Chronic kidney disease | 113,170 (21.99%) | 130,225 (40.52%) | 47,615 (32.48%) | 96,008 (36.75%) | 2195 (29.86%) | 7840 (26.84%) | <0.001 |
Smoking | 89,195 (17.33%) | 46,445 (14.45%) | 12,565 (8.57%) | 1355 (5.19%) | 1515 (20.61%) | 3395 (11.62%) | <0.001 |
Cannabis | 9200 (1.79%) | 10,225 (3.18%) | 3125 (2.13%) | 220 (0.84%) | 235 (3.2%) | 695 (2.38%) | <0.001 |
Inflammatory conditions | 117,770 (22.88%) | 54,535 (16.97%) | 27,855 (19.00%) | 3450 (13.21%) | 1870 (25.44%) | 5500 (18.83%) | <0.001 |
Liver disease | 33,530 (6.51%) | 13,580 (4.23%) | 12,940 (8.83%) | 1560 (5.97%) | 810 (11.02%) | 1855 (6.35%) | <0.001 |
Hypertension | 318,040 (61.79%) | 239,795 (74.61%) | 89,060 (60.75%) | 15,485 (59.28%) | 4395 (59.8%) | 17,265 (59.1%) | <0.001 |
Chronic obstructive pulmonary disease | 166,975 (32.44%) | 86,240 (26.83%) | 29,735 (20.28%) | 3940 (15.08%) | 2170 (29.52%) | 6845 (23.43%) | <0.001 |
Outcomes | |||||||
Length of stay (Days) | 5.27729 | 5.892685 | 5.474094 | 6.222818 | 5.929253 | 5.944205 | <0.001 |
Total healthcare charges (USD) | 63,220.4 | 68,025.46 | 81,048.61 | 93,302.8 | 64,817.87 | 85,304.59 | <0.001 |
Myocardial infarction | 18,880 (3.67%) | 9985 (3.11%) | 3910 (2.67%) | 900 (3.45%) | 235 (3.2%) | 825 (2.82%) | <0.001 |
Died during hospitalization | 12,075 (2.35%) | 6490 (2.02%) | 2840 (1.94%) | 660 (2.53%) | 195 (2.65%) | 645 (2.21%) | <0.001 |
Sudden cardiac death | 145 (0.03%) | 150 (0.05%) | 25 (0.02%) | 15 (0.06%) | 5 (0.07%) | 10 (0.03%) | 0.1605 |
Atrial fibrillation | 70,355 (13.67%) | 23,745 (7.39%) | 8145 (5.56%) | 2170 (8.31%) | 550 (7.48%) | 2355 (8.06%) | <0.001 |
Stenosis | 1050 (0.2%) | 135 (0.04%) | 130 (0.09%) | 10 (0.04%) | 0 | 10 (0.03%) | <0.001 |
Intracranial hemorrhage | 1475 (0.29%) | 1040 (0.32%) | 380 (0.26%) | 155 (0.59%) | 5 (0.07%) | 95 (0.33%) | 0.0008 |
SLE endocarditis | 945 (0.18%) | 665 (0.21%) | 465 (0.32%) | 95 (0.36%) | 15 (0.2%) | 120 (0.41%) | <0.001 |
SLE pericarditis | 1825 (0.35%) | 3500 (1.09%) | 1455 (0.99%) | 345 (1.32%) | 65 (0.88%) | 240 (0.82%) | <0.001 |
SLE lung | 4595 (0.89%) | 5830 (1.81%) | 2470 (1.68%) | 505 (1.93%) | 140 (1.9%) | 500 (1.71%) | <0.001 |
SLE nephropathy | 290 (0.06%) | 530 (0.16%) | 265 (0.18%) | 55 (0.21%) | 0 | 50(0.17%) | <0.001 |
Death | Adjusted Odds Ratio | 95% Confidence Interval | p-Value | |
---|---|---|---|---|
White | Reference | |||
Black | 1.168117 | 1.084155 | 1.258581 | <0.001 |
Hispanic | 1.042021 | 0.9471903 | 1.146346 | 0.398 |
Asian | 1.367261 | 1.1446 | 1.633236 | 0.001 |
Native | 1.192965 | 0.8654511 | 1.644422 | 0.281 |
Others | 1.202257 | 0.9988751 | 1.447051 | 0.051 |
Myocardial Infarction | Adjusted Odds Ratio | 95% Confidence Interval | p-Value | |
White | Reference | |||
Black | 0.9001332 | 0.8451338 | 0.9587118 | 0.01 |
Hispanic | 0.8737557 | 0.7989063 | 0.9556177 | 0.03 |
Asian | 1.036834 | 0.8782573 | 1.224044 | 0.669 |
Native | 0.961945 | 0.7187502 | 1.287345 | 0.794 |
Others | 0.937197 | 0.7969858 | 1.102075 | 0.433 |
Sudden Cardiac Death | Adjusted Odds Ratio | 95% Confidence Interval | p-Value | |
White | Reference | |||
Black | 1.640044 | 1.457555 | 1.845381 | <0.001 |
Hispanic | 1.029911 | 0.872259 | 1.21657 | 0.728 |
Asian | 1.495132 | 1.110036 | 2.013825 | 0.008 |
Native | 1.541412 | 0.9366863 | 2.536551 | 0.089 |
Others | 1.313558 | 0.9655792 | 1.786942 | 0.082 |
A. Fib | Adjusted Odds Ratio | 95% Confidence Interval | p-Value | |
White | Reference | |||
Black | 0.7783911 | 0.7467076 | 0.811419 | <0.001 |
Hispanic | 0.6357486 | 0.5980574 | 0.6758152 | <0.001 |
Asian | 0.8626692 | 0.7632225 | 0.9750738 | 0.018 |
Native | 0.7312086 | 0.5867045 | 0.9113037 | 0.005 |
Others | 0.8510107 | 0.7617538 | 0.950726 | 0.004 |
Stenosis | Adjusted Odds Ratio | 95% Confidence Interval | p-Value | |
White | Reference | |||
Black | 0.5829187 | 0.513643 | 0.6615377 | <0.001 |
Hispanic | 0.6044469 | 0.5077948 | 0.7195954 | <0.001 |
Asian | 0.549916 | 0.3509374 | 0.7853712 | 0.002 |
Native | 0.542131 | 0.2730568 | 1.088628 | 0.086 |
Others | 0.7567653 | 0.5520902 | 1.037319 | 0.083 |
Intracranial Hemorrhage | Adjusted Odds Ratio | 95% Confidence Interval | p-Value | |
White | Reference | |||
Black | 0.9258527 | 0.8017899 | 1.069112 | 0.294 |
Hispanic | 1.057469 | 0.8861537 | 1.261903 | 0.535 |
Asian | 1.797411 | 1.364365 | 2.367904 | <0.001 |
Native | 0.6441251 | 0.2900585 | 1.430391 | 0.28 |
Others | 1.224589 | 0.8804949 | 1.703155 | 0.229 |
SLE Endocarditis | Adjusted Odds Ratio | 95% Confidence Interval | p-Value | |
White | Reference | |||
Black | 0.6054928 | 0.468893 | 0.7818874 | <0.001 |
Hispanic | 0.9070059 | 0.6912973 | 1.190023 | 0.481 |
Asian | 1.018884 | 0.6252673 | 1.660289 | 0.94 |
Native | 0.6907387 | 0.2185372 | 2.183244 | 0.529 |
Others | 1.39589 | 0.8948261 | 2.177528 | 0.142 |
SLE Pericarditis | Adjusted Odds Ratio | 95% Confidence Interval | p-Value | |
White | Reference | |||
Black | 2.040103 | 1.780347 | 2.337757 | <0.001 |
Hispanic | 1.63384 | 1.383392 | 1.92963 | <0.001 |
Asian | 2.105227 | 1.614001 | 2.745959 | <0.001 |
Native | 1.744052 | 1.001834 | 3.036152 | 0.049 |
Others | 1.479975 | 1.059376 | 2.067563 | 0.022 |
SLE Lung | Adjusted Odds Ratio | 95% Confidence Interval | p-Value | |
White | Reference | |||
Black | 1.933659 | 1.756064 | 2.129214 | <0.001 |
Hispanic | 1.757082 | 1.561453 | 1.97722 | <0.001 |
Asian | 2.060911 | 1.678557 | 2.53036 | <0.001 |
Native | 2.025226 | 1.350933 | 3.036079 | 0.001 |
Others | 1.791006 | 1.448109 | 2.215099 | <0.001 |
SLE Nephropathy | Adjusted Odds Ratio | 95% Confidence Interval | p-Value | |
White | Reference | |||
Black | 1.464249 | 1.038518 | 2.064506 | 0.03 |
Hispanic | 1.652711 | 1.098918 | 2.485582 | 0.016 |
Asian | 1.884473 | 0.9803965 | 3.622247 | 0.057 |
Native | 1 | |||
Others | 1.888581 | 0.9716579 | 3.670777 | 0.061 |
LOS | Coefficient | 95% Confidence Interval | p-Value | |
White | Reference | |||
Black | 0.2999071 | 0.219143 | 0.3806713 | <0.001 |
Hispanic | 0.0164237 | −0.0815541 | 0.1144015 | 0.742 |
Asian | 0.7641767 | 0.5226747 | 1.005679 | <0.001 |
Native | 0.2568628 | −0.2674698 | 0.7811955 | 0.337 |
Others | 0.5718481 | 0.3286234 | 0.8150728 | <0.001 |
Total Health Charges | Coefficient | 95% Confidence Interval | p-Value | |
White | Reference | |||
Black | 1042.333 | −365.2967 | 2449.962 | 0.147 |
Hispanic | 15679.93 | 13771.27 | 17588.6 | <0.001 |
Asian | 24054.45 | 19049.44 | 29059.46 | <0.001 |
Native | −1789.874 | −9914.34 | 6334.592 | 0.666 |
Others | 20149.16 | 15458.31 | 24840.01 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shah, F.; Agrawal, S.P.; Maheta, D.; Thukral, J.; Sayeed, S. Unequal Burdens: Exploring Racial Disparities in Cardiovascular and SLE Outcomes Using National Inpatient Database 2016–2021. Rheumato 2025, 5, 10. https://doi.org/10.3390/rheumato5030010
Shah F, Agrawal SP, Maheta D, Thukral J, Sayeed S. Unequal Burdens: Exploring Racial Disparities in Cardiovascular and SLE Outcomes Using National Inpatient Database 2016–2021. Rheumato. 2025; 5(3):10. https://doi.org/10.3390/rheumato5030010
Chicago/Turabian StyleShah, Freya, Siddharth Pravin Agrawal, Darshilkumar Maheta, Jatin Thukral, and Syeda Sayeed. 2025. "Unequal Burdens: Exploring Racial Disparities in Cardiovascular and SLE Outcomes Using National Inpatient Database 2016–2021" Rheumato 5, no. 3: 10. https://doi.org/10.3390/rheumato5030010
APA StyleShah, F., Agrawal, S. P., Maheta, D., Thukral, J., & Sayeed, S. (2025). Unequal Burdens: Exploring Racial Disparities in Cardiovascular and SLE Outcomes Using National Inpatient Database 2016–2021. Rheumato, 5(3), 10. https://doi.org/10.3390/rheumato5030010