The Influence of Dietary Intervention in Connective Tissue Diseases: Evidence from Randomized Clinical Trials
Abstract
:1. Introduction
2. Search Method
3. Evidence from Randomized Clinical Trials
3.1. Systemic Lupus Erythematosus
3.1.1. Omega-3 Polyunsaturated Fatty Acids
3.1.2. Nutritional Counseling
3.1.3. Low Carbohydrate Diet
3.1.4. Vitamin D and Other Vitamins
3.1.5. Plant Polyphenols
3.2. Idiopathic Inflammatory Myopathies
3.3. Vasculitis
3.4. Sjögren’s Syndrome
3.5. Systemic Sclerosis (SSc)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Prickett, J.D.; Robinson, D.R.; Steinberg, A.D. Effects of dietary enrichment with eicosapentaenoic acid upon autoimmune nephritis in female NZB X NZW/F1 mice. Arthritis Rheum. 1983, 26, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Robinson, D.R.; Xu, L.L.; Tateno, S.; Guo, M.; Colvin, R.B. Suppression of autoimmune disease by dietary n-3 fatty acids. J. Lipid Res. 1993, 34, 1435–1444. [Google Scholar] [CrossRef]
- Kromann, N.; Green, A. Epidemiological studies in the Upernavik district, Greenland. Incidence of some chronic diseases 1950–1974. Acta Med. Scand. 1980, 208, 401–406. [Google Scholar] [CrossRef]
- Innes, J.K.; Calder, P.C. Marine Omega-3 (N-3) Fatty Acids for Cardiovascular Health: An Update for 2020. Int. J. Mol. Sci. 2020, 21, 1362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Westberg, G.; Tarkowski, A. Effect of MaxEPA in patients with SLE. A double-blind, crossover study. Scand. J. Rheumatol. 1990, 19, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Walton, A.J.; Snaith, M.L.; Locniskar, M.; Cumberland, A.G.; Morrow, W.J.; Isenberg, D.A. Dietary fish oil and the severity of symptoms in patients with systemic lupus erythematosus. Ann. Rheum. Dis. 1991, 50, 463–466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clark, W.F.; Parbtani, A.; Naylor, C.D.; Levinton, C.M.; Muirhead, N.; Spanner, E.; Huff, M.W.; Philbrick, D.J.; Holub, B.J. Fish oil in lupus nephritis: Clinical findings and methodological implications. Kidney Int. 1993, 44, 75–86. [Google Scholar] [CrossRef] [Green Version]
- Clark, W.F.; Kortas, C.; Heidenheim, A.P.; Garland, J.; Spanner, E.; Parbtani, A. Flaxseed in lupus nephritis: A two-year nonplacebo-controlled crossover study. J. Am. Coll. Nutr. 2001, 20 (Suppl. S2), 143–1488. [Google Scholar] [CrossRef]
- Duffy, E.M.; Meenagh, G.K.; McMillan, S.A.; Strain, J.J.; Hannigan, B.M.; Bell, A.L. The clinical effect of dietary supplementation with omega-3 fish oils and/or copper in systemic lupus erythematosus. J. Rheumatol. 2004, 31, 1551–1556. [Google Scholar] [PubMed]
- Wright, S.A.; O’Prey, F.M.; McHenry, M.T.; Leahey, W.J.; Devine, A.B.; Duffy, E.M.; Johnston, D.G.; Finch, M.B.; Bell, A.L.; McVeigh, G.E. A randomised interventional trial of omega-3-polyunsaturated fatty acids on endothelial function and disease activity in systemic lupus erythematosus. Ann. Rheum. Dis. 2008, 67, 841–848. [Google Scholar] [CrossRef] [PubMed]
- Arriens, C.; Hynan, L.S.; Lerman, R.H.; Karp, D.R.; Mohan, C. Placebo-controlled randomized clinical trial of fish oil’s impact on fatigue, quality of life, and disease activity in Systemic Lupus Erythematosus. Nutr. J. 2015, 14, 82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curado Borges, M.; de Miranda Moura Dos Santos, F.; Weiss Telles, R.; Melo de Andrade, M.V.; Toulson Davisson Correia, M.I.; Lanna, C.C.D. Omega-3 fatty acids, inflammatory status and biochemical markers of patients with systemic lupus erythematosus: A pilot study. Rev. Bras. Reumatol. Engl. Ed. 2017, 57, 526–534. [Google Scholar] [CrossRef] [Green Version]
- Shah, M.; Kavanaugh, A.; Coyle, Y.; Adams-Huet, B.; Lipsky, P.E. Effect of a culturally sensitive cholesterol lowering diet program on lipid and lipoproteins, body weight, nutrient intakes, and quality of life in patients with systemic lupus erythematosus. J. Rheumatol. 2002, 29, 2122–2128. [Google Scholar] [PubMed]
- Davies, R.J.; Lomer, M.C.; Yeo, S.I.; Avloniti, K.; Sangle, S.R.; D’Cruz, D.P. Weight loss and improvements in fatigue in systemic lupus erythematosus: A controlled trial of a low glycaemic index diet versus a calorie restricted diet in patients treated with corticosteroids. Lupus 2012, 21, 649–655. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, S.; Terreri, M.T.; Abad, T.; Machado, D.; Fonseca, F.; Hix, S.; Suano-Souza, F.I.; Sarni, R.; Len, C.A. The effect of nutritional intervention on the lipid profile and dietary intake of adolescents with juvenile systemic lupus erythematosus: A randomized, controlled trial. Lupus 2018, 27, 820–827. [Google Scholar] [CrossRef] [PubMed]
- Aranow, C.; Kamen, D.L.; Dall’Era, M.; Massarotti, E.M.; Mackay, M.C.; Koumpouras, F.; Coca, A.; Chatham, W.W.; Clowse, M.E.; Criscione-Schreiber, L.G.; et al. Randomized; Double-Blind; Placebo-Controlled Trial of the Effect of Vitamin D3 on the Interferon Signature in Patients With Systemic Lupus Erythematosus. Arthritis Rheumatol. 2015, 67, 1848–1857. [Google Scholar] [CrossRef] [Green Version]
- Andreoli, L.; Dall’Ara, F.; Piantoni, S.; Zanola, A.; Piva, N.; Cutolo, M.; Tincani, A. A 24-month prospective study on the efficacy and safety of two different monthly regimens of vitamin D supplementation in pre-menopausal women with systemic lupus erythematosus. Lupus 2015, 24, 499–506. [Google Scholar] [CrossRef]
- Kamen, D.L.; Oates, J.C. A Pilot Study to Determine if Vitamin D Repletion Improves Endothelial Function in Lupus Patients. Am. J. Med. Sci. 2015, 350, 302–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lima, G.L.; Paupitz, J.; Aikawa, N.E.; Takayama, L.; Bonfa, E.; Pereira, R.M. Vitamin D Supplementation in Adolescents and Young Adults With Juvenile Systemic Lupus Erythematosus for Improvement in Disease Activity and Fatigue Scores: A Randomized Double-Blind Placebo-Controlled Trial. Arthritis Care Res. Hoboken 2016, 68, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Lima, G.L.; Paupitz, J.A.; Aikawa, N.E.; Alvarenga, J.C.; Pereira, R.M.R. A randomized double-blind placebo-controlled trial of vitamin D supplementation in juvenile-onset systemic lupus erythematosus: Positive effect on trabecular microarchitecture using HR-pQCT. Osteoporos. Int. 2018, 29, 587–594. [Google Scholar] [CrossRef] [PubMed]
- Tam, L.S.; Li, E.K.; Leung, V.Y.; Griffith, J.F.; Benzie, I.F.; Lim, P.L.; Whitney, B.; Lee, V.W.; Lee, K.K.; Thomas, G.N.; et al. Effects of vitamins C and E on oxidative stress markers and endothelial function in patients with systemic lupus erythematosus: A double blind; placebo controlled pilot study. J. Rheumatol. 2005, 32, 275–282. [Google Scholar]
- Khajehdehi, P.; Zanjaninejad, B.; Aflaki, E.; Nazarinia, M.; Azad, F.; Malekmakan, L.; Dehghanzadeh, G.R. Oral supplementation of turmeric decreases proteinuria; hematuria; and systolic blood pressure in patients suffering from relapsing or refractory lupus nephritis: A randomized and placebo-controlled study. J. Ren. Nutr. 2012, 22, 50–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shamekhi, Z.; Amani, R.; Habibagahi, Z.; Namjoyan, F.; Ghadiri, A.; Saki Malehi, A. A Randomized; Double-blind; Placebo-controlled Clinical Trial Examining the Effects of Green Tea Extract on Systemic Lupus Erythematosus Disease Activity and Quality of Life. Phytother. Res. 2017, 31, 1063–1071. [Google Scholar] [CrossRef]
- Hayashi, A.P.; Solis, M.Y.; Sapienza, M.T.; Otaduy, M.C.; de Sá Pinto, A.L.; Silva, C.A.; Sallum, A.M.; Pereira, R.M.; Gualano, B. Efficacy and safety of creatine supplementation in childhood-onset systemic lupus erythematosus: A randomized, double-blind, placebo-controlled, crossover trial. Lupus 2014, 23, 1500–1511. [Google Scholar] [CrossRef] [PubMed]
- Benvenuti, F.; Gatto, M.; Larosa, M.; Iaccarino, L.; Punzi, L.; Doria, A. Cardiovascular risk factors; burden of disease and preventive strategies in patients with systemic lupus erythematosus: A literature review. Expert Opin. Drug Saf. 2015, 14, 1373–1385. [Google Scholar] [CrossRef]
- Oliviero, F.; Scanu, A.; Zamudio-Cuevas, Y.; Punzi, L.; Spinella, P. Anti-inflammatory effects of polyphenols in arthritis. J. Sci. Food Agric. 2018, 98, 1653–1659. [Google Scholar] [CrossRef] [PubMed]
- Oliviero, F.; Galozzi, P.; Scanu, A.; Galuppini, F.; Lazzarin, V.; Brocco, S.; Ravagnan, G.; Sfriso, P.; Ramonda, R.; Spinella, P.; et al. Polydatin Prevents Calcium Pyrophosphate Crystal-Induced Arthritis in Mice. Nutrients 2021, 13, 929. [Google Scholar] [CrossRef] [PubMed]
- Khan, H.; Sureda, A.; Belwal, T.; Çetinkaya, S.; Süntar, I.; Tejada, S.; Devkota, H.P.; Ullah, H.; Aschner, M. Polyphenols in the treatment of autoimmune diseases. Autoimmun. Rev. 2019, 18, 647–657. [Google Scholar] [CrossRef]
- Di Meo, F.; Valentino, A.; Petillo, O.; Peluso, G.; Filosa, S.; Crispi, S. Bioactive Polyphenols and Neuromodulation: Molecular Mechanisms in Neurodegeneration. Int. J. Mol. Sci. 2020, 21, 2564. [Google Scholar] [CrossRef] [Green Version]
- Santos, S.A.; Silva, E.T.; Caris, A.V.; Lira, F.S.; Tufik, S.; Dos Santos, R.V. Vitamin E supplementation inhibits muscle damage and inflammation after moderate exercise in hypoxia. J. Hum. Nutr. Diet. 2016, 29, 516–522. [Google Scholar] [CrossRef] [PubMed]
- Lambert, K.; Coisy-Quivy, M.; Bisbal, C.; Sirvent, P.; Hugon, G.; Mercier, J.; Avignon, A.; Sultan, A. Grape polyphenols supplementation reduces muscle atrophy in a mouse model of chronic inflammation. Nutrition 2015, 31, 1275–1283. [Google Scholar] [CrossRef]
- Capel, F.; Acquaviva, C.; Pitois, E.; Laillet, B.; Rigaudière, J.P.; Jouve, C.; Pouyet, C.; Gladine, C.; Comte, B.; Vianey Saban, C.; et al. DHA at nutritional doses restores insulin sensitivity in skeletal muscle by preventing lipotoxicity and inflammation. J. Nutr. Biochem. 2015, 26, 949–959. [Google Scholar] [CrossRef]
- Falcini, F.; Porfirio, B.; Lionetti, P. Juvenile dermatomyositis and celiac disease. J. Rheumatol. 1999, 26, 1419–1420. [Google Scholar] [PubMed]
- Song, M.S.; Farber, D.; Bitton, A.; Jass, J.; Singer, M.; Karpati, G. Dermatomyositis associated with celiac disease: Response to a gluten-free diet. Can. J. Gastroenterol. 2006, 20, 433–435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, Y.L.; Alexanderson, H.; Pipitone, N.; Morrison, C.; Dastmalchi, M.; Ståhl-Hallengren, C.; Richards, S.; Thomas, E.L.; Hamilton, G.; Bell, J.D.; et al. Creatine supplements in patients with idiopathic inflammatory myopathies who are clinically weak after conventional pharmacologic treatment: Six-month; double-blind; randomized; placebo-controlled trial. Arthritis Rheum. 2007, 57, 694–702. [Google Scholar] [CrossRef] [PubMed]
- Chung, Y.L.; Rider, L.G.; Bell, J.D.; Summers, R.M.; Zemel, L.S.; Rennebohm, R.M.; Passo, M.H.; Hicks, J.; Miller, F.W.; Scott, D.L. Muscle metabolites; detected in urine by proton spectroscopy; correlate with disease damage in juvenile idiopat hic inflammatory myopathies. Arthritis Rheum. 2005, 53, 565–570. [Google Scholar] [CrossRef]
- Solis, M.Y.; Hayashi, A.P.; Artioli, G.G.; Roschel, H.; Sapienza, M.T.; Otaduy, M.C.; De Sã Pinto, A.L.; Silva, C.A.; Sallum, A.M.; Pereira, R.M.; et al. Efficacy and safety of creatine supplementation in juvenile dermatomyositis: A randomized; double-blind; placebo-controlled crossover trial. Muscle Nerve 2016, 53, 58–66. [Google Scholar] [CrossRef]
- Dover, S.; Stephens, S.; Schneiderman, J.E.; Pullenayegum, E.; Wells, G.D.; Levy, D.M.; Marcuz, J.A.; Whitney, K.; Schulze, A.; Tein, I.; et al. The Effect of Creatine Supplementation on Muscle Function in Childhood Myositis: A Randomized; Double-blind; Placebo-controlled Feasibility Study. J. Rheumatol. 2021, 48, 434–441. [Google Scholar] [CrossRef]
- Consolandi, C.; Turroni, S.; Emmi, G.; Severgnini, M.; Fiori, J.; Peano, C.; Biagi, E.; Grassi, A.; Rampelli, S.; Silvestri, E.; et al. Behçet’s syndrome patients exhibit specific microbiome signature. Autoimmun. Rev. 2015, 14, 269–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kau, A.L.; Ahern, P.P.; Griffin, N.W.; Goodman, A.L.; Gordon, J.I. Human nutrition; the gut microbiome and the immune system. Nature 2021, 474, 327–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pagliai, G.; Dinu, M.; Fiorillo, C.; Becatti, M.; Turroni, S.; Emmi, G.; Sofi, F. Modulation of gut microbiota through nutritional interventions in Behçet’s syndrome patients (the MAMBA study): Study protocol for a randomized controlled trial. Trials 2020, 21, 511. [Google Scholar] [CrossRef]
- Emmi, G.; Bettiol, A.; Niccolai, E.; Ramazzotti, M.; Amedei, A.; Pagliai, G.; Taddei, N.; Sofi, F.; Fiorillo, C.; Prisco, D.; et al. Butyrate-Rich Diets Improve Redox Status and Fibrin Lysis in Behçet’s Syndrome. Circ. Res. 2021, 128, 278–280. [Google Scholar] [CrossRef] [PubMed]
- Machowicz, A.; Hall, I.; de Pablo, P.; Rauz, S.; Richards, A.; Higham, J.; Poveda-Gallego, A.; Imamura, F.; Bowman, S.J.; Barone, F.; et al. Mediterranean diet and risk of Sjögren’s syndrome. Clin. Exp. Rheumatol. 2020, 38 (Suppl. S126), 216–221. [Google Scholar] [PubMed]
- Haupt-Jorgensen, M.; Groule, V.; Reibel, J.; Buschard, K.; Pedersen, A.M.L. Gluten-free diet modulates inflammation in salivary glands and pancreatic islets. Oral Dis. 2021. [Google Scholar] [CrossRef] [PubMed]
- Tovar, A.R.; Gómez, E.; Bourges, H.; Ortíz, V.; Kraus, A.; Torres, N. Biochemical deficiency of pyridoxine does not affect interleukin-2 production of lymphocytes from patients with Sjögren’s syndrome. Eur. J. Clin. Nutr. 2002, 56, 1087–1093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, M.; Stark, P.C.; Palmer, C.A.; Gilbard, J.P.; Papas, A.S. Effect of omega-3 and vitamin E supplementation on dry mouth in patients with Sjögren’s syndrome. Spec. Care Dent. 2010, 30, 225–229. [Google Scholar] [CrossRef] [PubMed]
- Codullo, V.; Cereda, E.; Klers, Y.C.; Cavazzana, I.; Alpini, C.; Bonardi, C.; Turri, A.; Franceschini, F.; Caccialanza, R.; Montecucco, C.; et al. Serum prealbumin is an independent predictor of mortality in systemic sclerosis outpatients. Rheumatol. Oxf. 2016, 55, 315–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakkas, L.I.; Simopoulou, T.; Daoussis, D.; Liossis, S.N.; Potamianos, S. Intestinal Involvement in Systemic Sclerosis: A Clinical Review. Dig. Dis. Sci. 2018, 63, 834–844. [Google Scholar] [CrossRef] [PubMed]
- Marighela, T.F.; Arismendi, M.I.; Marvulle, V.; Brunialti, M.K.C.; Salomão, R.; Kayser, C. Effect of probiotics on gastrointestinal symptoms and immune parameters in systemic sclerosis: A randomized placebo-controlled trial. Rheumatol. Oxf. 2019, 58, 1985–1990. [Google Scholar] [CrossRef] [PubMed]
- Low, A.H.L.; Teng, G.G.; Pettersson, S.; de Sessions, P.F.; Ho, E.X.P.; Fan, Q.; Chug, C.W.; Lawa, A.H.N.; Santosacd, A.; Lim, A.Y.N.; et al. A double-blind randomized placebo-controlled trial of probiotics in systemic sclerosis associated gastrointestinal disease. Semin. Arthritis Rheum. 2019, 49, 411–419. [Google Scholar] [CrossRef] [PubMed]
- DiGiacomo, R.A.; Kremer, J.M.; Shah, D.M. Fish-oil dietary supplementation in patients with Raynaud’s phenomenon: A double-blind; controlled; prospective study. Am. J. Med. 1989, 86, 158–164. [Google Scholar] [CrossRef]
Reference | Trial Type | Main Inclusion Criteria | Cases (N.) | Intervention/Die | Control | Intervention Period | Outcomes | Main Results | |
---|---|---|---|---|---|---|---|---|---|
n-3 fatty acids | Westberg, 1990 [5] | Randomized, double blind, crossover | Active disease | 17 | MaxEPA 0.2 g/kg | Olive oil | 6 months | Clinical and laboratory parameters | Short-lived benefit |
Walton, 1991 [6] | Randomized, double blind, crossover | Active disease | 27 | Low fat diet + 20 g MaxEPA | Olive oil | 6 months | Clinical and laboratory parameters | Significant benefit | |
Clark, 1993 [7] | Randomized, double blind, placebo controlled, crossover | Stable active disease, with nephritis | 26 | Fish oil (2.7 g EPA, 1.7 g DHA) | Olive oil | 12 months | Renal function, plasma lipids, SLEDAI, immunological markers | No changes in renal function or SLEDAI andsignificant decrease in TG and VLDL levels | |
Clark, 2001 [8] | Randomized, double blind, non-placebo controlled, crossover | Hematuria, proteinuria | 23 (23c + 23p) | Flaxseeds 30 g | No flaxseeds | 24 months | Renal function, plasma lipids | Some renoprotective effects, poor adherence | |
Duffy, 2004 [9] | Randomized, double blind, double placebo controlled, factorial | Stable active disease | 52 (13c + 14c +13c + 12p) | MaxEPA fish oil 3 g, copper 3 mg | Double placebo (olive oil) | 6 months | Disease activity. Biochemical and immunological markers | Significant reduction in SLAM-R | |
Wright, 2008 [10] | Randomized, double blind, placebo controlled, parallel | SLE without comorbidities | 60 (30c + 30p) | Fish oil (1.8 g EPA, 1.2 g DHA) capsules | Olive oil capsules | 6 months | Disease activity, endothelial functions | Significant reduction in SLAM-R, BILAG, and TG and significant increase in FMD and decrease in DSS | |
Arriens, 2015 [11] | Randomized, single blind, placebo controlled | SLE with ACR criteria | 50 (25c + 25p) | Fish oil (2.25 g EPA, 2.25 g DHA) capsules | Olive oil capsules | 6 months | Fatigue, QoL, disease activity, inflammatory biomarkers | Improvement in global disease assessment Non-significant improvement in fatigue and decrease in ESR and IL-12 | |
Borges, 2016 [12] | Randomized, parallel, pilot study | Female with SLE of disease duration > 1 year | 49 (22c + 27p) | n-3 fatty acids (540 mg EPA, 100 mg DHA), tablets | No intervention | 3 months | Biochemical inflammatory and lipid markers | No benefit | |
Nutritional intervention | Shah, 2002 [13] | Randomized, controlled, double blind | Disease lasting 6 months, LDL ≥ 100 mg/dL | 17 (8c + 7p) | NCEP Step II diet | No dietary advice | 3 months | QoL, lipids | Improvement in QOL and short benefit for lipids |
Davies, 2012 [14] | Randomized, controlled, double blind | Mild and stable disease treated with corticosteroids | 23 (11c + 12p) | Low glycemic index diet | Calorie-restricted diet | 6 weeks | Weight loss, CV risk markers, disease activity, sleep quality | Significant weight loss and reduction of fatigue in both groups | |
Da Silva, 2018 [15] | Randomized, controlled, single blind | Juvenile SLE for at least 6 months | 31 (15c + 16p) | Nutritional instruction | No dietary advises | 9 months | Carbohydrates and fat intake, lipid and glucose metabolism biomarkers | Significant improvement in lipid metabolism and reduction of CVR | |
Vitamin D | Aranow, 2015 [16] | Randomized, double blind, placebo controlled | Stable, inactive disease with 25(OH)D < 20 ng/ml | 54 (17c + 18c + 19p) | Low-dose VitD3 (2000 IU) high-dose VitD3 (4000 IU) | Placebo | 12 weeks | IFN signature response | No benefit |
Andreoli, 2015 [17] | Randomized, double blind, crossover | Stable disease | 34 (18c + 16c) | VitD3 50,000 IU/month | Cholecalciferol 25,000 IU/month | 24 months | VitD levels, disease activity, bone metabolism markers | No benefit | |
Kamen, 2015 [18] | Randomized, single blind, controlled, pilot study | VitD-deficient SLE subjects, inactive disease | 9 (6c + 3p) | VitD3 5000 IU | VitD3, 400 IU/day | 16 weeks | Endothelial function | Non-significant increase in FMD | |
Lima, 2016 [19] | Randomized, double blind, placebo controlled | Juvenile-onset SLE | 40 (20c + 20p) | VitD3, 50,000 IU/week, tablets | Placebo tablets | 6 months | Disease activity, fatigue | Significant improvement in SLEDAI, ECLAM, and fatigue | |
Lima, 2018 [20] | Randomized, double blind, placebo controlled | Juvenile-onset SLE | 40 (20c + 20p) | VitD3, 50,000 IU/week, tablets | Placebo tablets | 6 months | Bone microarchitecture parameters | Significant improvement in trabecular number | |
Other vitamins | Tam, 2005 [21] | Randomized, double blind, placebo controlled | Stable disease | 39 (20c + 19p) | Vitamins (500 mg VitC, 800 IU VitE) | Placebo | 3 months | Markers of oxidative stress, endothelial function | Modest reduction in lipid peroxidation |
Polyphenols | Khajehdehi, 2012 [22] | Randomized, placebo controlled | SLE with relapsing or refractory nephritis | 24 (12c + 12p) | Turmeric 500 mg (22.1 mg curcumin), capsules | Starch capsules | 3 months | Renal functions, hematological parameters | Significant decrease in proteinuria, hematuria and systolic blood pressure |
Shamekh, 2017 [23] | Randomized, double blind, placebo controlled | Stable disease | 31 (32c + 66p) | Green tea extract, 1000 mg, capsules | Starch, 1000 mg/day, capsules | 3 months | Disease activity, QoL | Significant improvement in SLEDAI Benefit on QoL | |
Creatine | Hayashi, 2014 [24] | Randomized, double blind, placebo controlled, crossover | Childhood- onset SLE with SLEDAI-2K <8 | 15 (7c + 8p) | Creatine monohydrate 0.1 g/kg, juice | Dextrose, juice | 12 weeks + 8 washout | Muscle function Biochemical markers, QoL | No benefit |
Reference | Study Type | Main Inclusion Criteria | Cases (N.) | Intervention | Control | Intervention Period | Outcomes | Main Results |
---|---|---|---|---|---|---|---|---|
Chung, 2007 [35] | Randomized, double blind, placebo controlled | PM or DM | 37 (19c + 18p) | Creatine, 20 g/day for 8 days, 3 g/day plus exercise | Placebo plus exercise | 6 months | Aggregate functional performance time, functional index | Significant improvement in muscle performance and functional index |
Solis, 2015 [37] | Randomized, double blind, placebo controlled, crossover | Juvenile DM with stable medications | 15 | Creatine monohydrate, 0.1 g/kg/die | Dextrose | 3 months | Muscle function, bone remodeling, and inflammatory markers | No effect on muscle function |
Dover, 2021 [38] | Randomized, double blind, placebo controlled, multiple baseline design | Juvenile DM with stable medications | 13 | Creatine, 150 mg/kg/die, tablets | Placebo tablets | 6 months | Muscle function and metabolism, fatigue, QoL | No clinical benefit, significant improvement in muscle metabolism |
Reference | Study Type | Main Inclusion Criteria | Cases (N.) | Intervention | Control | Intervention Period | Outcomes | Main Results |
---|---|---|---|---|---|---|---|---|
Pagliai, 2020 [41] | Randomized, open, crossover | BD without any other autoimmune disease | 90 |
Lacto-ovo- vegetarian diet Mediterranean diet Mediterranean diet + butyrate | - | 3 months | Gastrointestinal and systemic symptoms | Study protocol |
Emmi, 2021 [42] | Randomized, open, parallel | BD on stable treatment | 17 (8c + 9p) |
Butyrate (2.4 g/day) Lacto-ovo-vegetarian diet leading to increased butyrate production | - | 3 months | Blood redox status, fibrin degradation, and clinical modifications | Significant improvement in redox status and reduction in disease activity |
Reference | Study Type | Main Inclusion Criteria | Cases (N.) | Intervention/ Daily | Control | Intervention Period | Outcomes | Main Results |
---|---|---|---|---|---|---|---|---|
Tovar, 2002 [45] | Randomized, double blind, placebo controlled, crossover | Primary SS | 20c + 14 healthysubjects | Pyridoxine 25 mg | Placebo | 3 months | IL-2 production in cultured lymphocytes | No difference between patients and healthy controls |
Singh, 2010 [46] | Randomized, double masked, placebo controlled | Primary or secondary SS | 61 (38c + 23c) | n-3 fatty acids (450 mg EPA, 300 mg DHA) + VitE | Wheat germ oil | 3 months | Saliva secretion, inflammatory markers | Increased salivary production with no difference between groups |
Reference | Study Type | Main Inclusion Criteria | Cases (N.) | Intervention/ Daily | Control | Intervention Period | Outcomes | Main Results |
---|---|---|---|---|---|---|---|---|
Marighela, 2019 [49] | Randomized, double blind, placebo controlled | Moderate-severe SSc with GI involvement | 73 (37c + 36p) | Probiotics (L. paracasei, L. rhamnosus, L. acidophillus, B. lactis) 109 CFU/each | Placebo | 2 months | GI symptoms, Th levels | No benefit on GI symptoms, reduction in Th17 cell levels |
Low, 2019 [50] | Randomized, double blind, placebo controlled parallel group | Primary or secondary SS | 40 (19c + 21p) | Probiotics (multistrain supplement *) 1800 billion CFU | Placebo | 2 months | GI symptoms, HAQ-DI | Improvement in GI reflux |
DiGiacomo, 1989 [51] | Randomized, double blind, placebo controlled | Primary or secondary Raynaud’s phenomenon | 32 (16c + 16p) | Fish oil 3.96 g EPA, 2.64 g DHA | Olive oil | 4 months | Onset of vasospasm, digital systolic pressure, and arterial flow | Improvement in primary but not secondary Raynaud |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliviero, F.; Galozzi, P.; Zanatta, E.; Gatto, M.; Spinella, P.; Doria, A. The Influence of Dietary Intervention in Connective Tissue Diseases: Evidence from Randomized Clinical Trials. Rheumato 2021, 1, 5-16. https://doi.org/10.3390/rheumato1010003
Oliviero F, Galozzi P, Zanatta E, Gatto M, Spinella P, Doria A. The Influence of Dietary Intervention in Connective Tissue Diseases: Evidence from Randomized Clinical Trials. Rheumato. 2021; 1(1):5-16. https://doi.org/10.3390/rheumato1010003
Chicago/Turabian StyleOliviero, Francesca, Paola Galozzi, Elisabetta Zanatta, Mariele Gatto, Paolo Spinella, and Andrea Doria. 2021. "The Influence of Dietary Intervention in Connective Tissue Diseases: Evidence from Randomized Clinical Trials" Rheumato 1, no. 1: 5-16. https://doi.org/10.3390/rheumato1010003
APA StyleOliviero, F., Galozzi, P., Zanatta, E., Gatto, M., Spinella, P., & Doria, A. (2021). The Influence of Dietary Intervention in Connective Tissue Diseases: Evidence from Randomized Clinical Trials. Rheumato, 1(1), 5-16. https://doi.org/10.3390/rheumato1010003