Expanding the Biosynthetic Toolbox: The Potential and Challenges of In Vitro Type II Polyketide Synthase Research
Abstract
:1. Introduction
2. Structural and Biosynthetic Diversity in Canonical Type II PKS
3. Canonical Type II PKS
3.1. Acyl Carrier Proteins
3.2. KS-CLF Heterodimer
3.3. Starter Units
3.4. Aromatases and Cyclases
4. Highly Reducing Type II PKS Systems and Other New Findings
5. Future Directions
5.1. Acyl Carrier Proteins
5.2. Ketosynthase and Chain-Length Factors
5.3. Cyclases
5.4. Derivatized Scaffolds
5.5. Biofuel
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pham, J.V.; Yilma, M.A.; Feliz, A.; Majid, M.T.; Maffetone, N.; Walker, J.R.; Kim, E.; Cho, H.J.; Reynolds, J.M.; Song, M.C.; et al. A Review of the Microbial Production of Bioactive Natural Products and Biologics. Front. Microbiol. 2019, 10, 1404. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, R.; Chen, X.; Sun, X.; Yan, Y.; Shen, X.; Yuan, Q. Biosynthesis of aromatic polyketides in microorganisms using type II polyketide synthases. Microb. Cell Fact 2020, 19, 110. [Google Scholar] [CrossRef]
- Hertweck, C.; Luzhetskyy, A.; Rebets, Y.; Bechthold, A. Type II polyketide synthases: Gaining a deeper insight into enzymatic teamwork. Nat. Prod. Rep. 2007, 24, 162–190. [Google Scholar] [CrossRef]
- Gao, X.; Wang, P.; Tang, Y. Engineered polyketide biosynthesis and biocatalysis in Escherichia coli. Appl. Microbiol. Biotechnol. 2010, 88, 1233–1242. [Google Scholar] [CrossRef]
- Keatinge-Clay, A.T. The structures of type I polyketide synthases. Nat. Prod. Rep. 2012, 29, 1050. [Google Scholar] [CrossRef]
- Austin, M.B.; Noel, J.P. The chalcone synthase superfamily of type III polyketide synthases. Nat. Prod. Rep. 2003, 20, 79–110. [Google Scholar] [CrossRef]
- Hertweck, C. The Biosynthetic Logic of Polyketide Diversity. Angew. Chem. Int. Ed. 2009, 48, 4688–4716. [Google Scholar] [CrossRef]
- Nivina, A.; Yuet, K.P.; Hsu, J.; Khosla, C. Evolution and Diversity of Assembly-Line Polyketide Synthases. Chem. Rev. 2019, 119, 12524–12547. [Google Scholar] [CrossRef]
- Herbst, D.A.; Townsend, C.A.; Maier, T. The architectures of iterative type I PKS and FAS. Nat. Prod. Rep. 2018, 35, 1046–1069. [Google Scholar] [CrossRef]
- Yu, D.; Xu, F.; Zeng, J.; Zhan, J. Type III polyketide synthases in natural product biosynthesis. IUBMB Life 2012, 64, 285–295. [Google Scholar] [CrossRef]
- Katsuyama, Y.; Ohnishi, Y. Chapter Sixteen—Type III Polyketide Synthases in Microorganisms. In Methods in Enzymology; Hopwood, D.A., Ed.; Academic Press: Cambridge, MA, USA, 2012; Volume 515, pp. 359–377. [Google Scholar]
- Shimizu, Y.; Ogata, H.; Goto, S. Type III Polyketide Synthases: Functional Classification and Phylogenomics. ChemBioChem 2017, 18, 50–65. [Google Scholar] [CrossRef]
- Palmer, C.M.; Alper, H.S. Expanding the Chemical Palette of Industrial Microbes: Metabolic Engineering for Type III PKS-Derived Polyketides. Biotechnol. J. 2019, 14, 1700463. [Google Scholar] [CrossRef]
- Chen, A.; Re, R.N.; Burkart, M.D. Type II fatty acid and polyketide synthases: Deciphering protein–protein and protein–substrate interactions. Nat. Prod. Rep. 2018, 35, 1029–1045. [Google Scholar] [CrossRef]
- Smith, S.; Tsai, S.-C. The type I fatty acid and polyketide synthases: A tale of two megasynthases. Nat. Prod. Rep. 2007, 24, 1041. [Google Scholar] [CrossRef]
- Keatinge-Clay, A.T.; Maltby, D.A.; Medzihradszky, K.F.; Khosla, C.; Stroud, R.M. An antibiotic factory caught in action. Nat. Struct. Mol. Biol. 2004, 11, 888–893. [Google Scholar] [CrossRef]
- Malico, A.A.; Nichols, L.; Williams, G.J. Synthetic biology enabling access to designer polyketides. Curr. Opin. Chem. Biol. 2020, 58, 45–53. [Google Scholar] [CrossRef]
- Brockmann, H.; Pini, H. Actinorhodine, a red pigment from Actinomycetes. Sci. Nat. 1947, 34, 190. [Google Scholar] [CrossRef]
- Weber, W.; Zähner, H.; Siebers, J.; Schröder, K.; Zeeck, A. Stoffwechselprodukte von Mikroorganismen. 175. Mitteilung. Tetracenomycin C. Arch. Microbiol. 1979, 121, 111–116. [Google Scholar] [CrossRef]
- Motamedi, H.; Hutchinson, C.R. Cloning and heterologous expression of a gene cluster for the biosynthesis of tetracenomycin C, the anthracycline antitumor antibiotic of Streptomyces glaucescens. Proc. Natl. Acad. Sci. USA 1987, 84, 4445–4449. [Google Scholar] [CrossRef]
- Hallam, S.E.; Malpartida, F.; Hopwood, D.A. Nucleotide sequence, transcription and deduced function of a gene involved in polyketide antibiotic synthesis in Streptomyces coelicolor. Gene 1988, 74, 305–320. [Google Scholar] [CrossRef]
- Burson, K.K.; Khosla, C. Dissecting the Chain Length Specificity in Bacterial Aromatic Polyketide Synthases using Chimeric Genes. Tetrahedron 2000, 56, 9401–9408. [Google Scholar] [CrossRef]
- Qun, T.; Zhou, T.; Hao, J.; Wang, C.; Zhang, K.; Xu, J.; Wang, X.; Zhou, W. Antibacterial activities of anthraquinones: Structure–activity relationships and action mechanisms. RSC Med. Chem. 2023, 14, 1446–1471. [Google Scholar] [CrossRef]
- Bringmann, G.; Irmer, A.; Feineis, D.; Gulder, T.A.M.; Fiedler, H.-P. Convergence in the biosynthesis of acetogenic natural products from plants, fungi, and bacteria. Phytochemistry 2009, 70, 1776–1786. [Google Scholar] [CrossRef] [PubMed]
- Cheemalamarri, C.; Batchu, U.R.; Thallamapuram, N.P.; Katragadda, S.B.; Reddy Shetty, P. A review on hydroxy anthraquinones from bacteria: Crosstalk’s of structures and biological activities. Nat. Prod. Res. 2022, 36, 6186–6205. [Google Scholar] [CrossRef] [PubMed]
- Kakinuma, S.; Ikeda, H.; Omura, S.; Hopwood, D.A. Biosynthesis of kalafungin in Streptomyces tanashiensis. J. Antibiot. 1990, 43, 391–396. [Google Scholar] [CrossRef] [PubMed]
- Bergy, M.E. Kalafungin, A New Broad Spectrum Antibiotic. J. Antibiot. 1968, 21, 454–457. [Google Scholar] [CrossRef] [PubMed]
- Takano, S.; Hasuda, K.; Ito, A.; Koide, Y.; Ishii, F.; Haneda, I.; Chihara, S.; Koyama, Y. A new antibiotic, medermycin. J. Antibiot. 1976, 29, 765–768. [Google Scholar] [CrossRef] [PubMed]
- Corbaz, R.; Ettlinger, L.; Gäumann, E.; Kalvoda, J.; Keller-Schierlein, W.; Kradolfer, F.; Manukian, B.K.; Neipp, L.; Prelog, V.; Reusser, P.; et al. Stoffwechselprodukte von Actinomyceten. 9. Mitteilung. Granaticin. Helv. Chim. Acta 1957, 40, 1262–1269. [Google Scholar] [CrossRef]
- Jabila Mary, T.R.; Kannan, R.R.; Muthamil Iniyan, A.; Carlton Ranjith, W.A.; Nandhagopal, S.; Vishwakarma, V.; Prakash Vincent, S.G. β-lactamase inhibitory potential of kalafungin from marine Streptomyces in Staphylococcus aureus infected zebrafish. Microbiol. Res. 2021, 244, 126666. [Google Scholar] [CrossRef]
- Okabe, T.; Nomoto, K.; Funabashi, H.; Okuda, S.; Suzuki, H.; Tanaka, N. Lactoquinomycin, a novel anticancer antibiotic. II. Physico-chemical properties and structure assignment. J. Antibiot. 1985, 38, 1333–1336. [Google Scholar] [CrossRef]
- Ichinose, K.; Bedford, D.J.; Tornus, D.; Bechthold, A.; Bibb, M.J.; Peter Revill, W.; Floss, H.G.; Hopwood, D.A. The granaticin biosynthetic gene cluster of Streptomyces violaceoruber Tü22: Sequence analysis and expression in a heterologous host. Chem. Biol. 1998, 5, 647–659. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, M.; Watari, S.; Taguchi, T.; Ishikawa, K.; Kumamoto, T.; Okamoto, S.; Ichinose, K. Actinorhodin Biosynthesis Terminates with an Unprecedented Biaryl Coupling Reaction. Angew. Chem. Int. Ed. 2023, 62, e202214400. [Google Scholar] [CrossRef] [PubMed]
- Bhuyan, B.K.; Dietz, A. Fermentation, taxonomic, and biological studies on nogalamycin. Antimicrob. Agents Chemother. 1965, 5, 836–844. [Google Scholar] [PubMed]
- Arora, S.K. Molecular structure, absolute stereochemistry, and interactions of nogalamycin, a DNA-binding anthracycline antitumor antibiotic. J. Am. Chem. Soc. 1983, 105, 1328–1332. [Google Scholar] [CrossRef]
- Arena, E.; D’Alessandro, N.; Dusonchet, L.; Gebbia, N.; Gerbasi, F.; Palazzoadriano, M.; Raineri, A.; Rausa, L.; Tubaro, E. Analysis of the pharmacokinetic characteristics, pharmacological and chemotherapeutic activity of 14-Hydroxy-daunomycin (Adriamycin), a new drug endowed with an antitumour activity. Arzneimittelforschung 1971, 21, 1258–1263. [Google Scholar] [PubMed]
- Hutchinson, C.R. Biosynthetic Studies of Daunorubicin and Tetracenomycin C. Chem. Rev. 1997, 97, 2525–2536. [Google Scholar] [CrossRef]
- Wiley, P.F.; Elrod, D.W.; Marshall, V.P. Biosynthesis of the anthracycline antibiotics nogalamycin and steffimycin B. J. Org. Chem. 1978, 43, 3457–3461. [Google Scholar] [CrossRef]
- Siitonen, V.; Nji Wandi, B.; Törmänen, A.-P.; Metsä-Ketelä, M. Enzymatic Synthesis of the C-Glycosidic Moiety of Nogalamycin R. ACS Chem. Biol. 2018, 13, 2433–2437. [Google Scholar] [CrossRef]
- Wiley, P.F. Improved Antitumor Activity by Modification of Nogalamycin. J. Nat. Prod. 1979, 42, 569–582. [Google Scholar] [CrossRef]
- McGovren, J.P.; Neil, G.L.; Denlinger, R.H.; Hall, T.L.; Crampton, S.L.; Swenberg, J.A. Chronic Cardiotoxicity Studies in Rabbits with 7-con-O-Methylnogarol, a New Anthracycline Antitumor Agent1. Cancer Res. 1979, 39, 4849–4855. [Google Scholar] [PubMed]
- Hulst, M.B.; Grocholski, T.; Neefjes, J.J.C.; Van Wezel, G.P.; Metsä-Ketelä, M. Anthracyclines: Biosynthesis, engineering and clinical applications. Nat. Prod. Rep. 2022, 39, 814–841. [Google Scholar] [CrossRef] [PubMed]
- Drautz, H.; Reuschenbach, P.; Zähner, H.; Rohr, J.; Zeeck, A. Metabolic products of microorganisms. 225. Elloramycin, a new anthracycline-like antibiotic from Streptomyces olivaceus. Isolation, characterization, structure and biological properties. J. Antibiot. 1985, 38, 1291–1301. [Google Scholar] [CrossRef]
- Ramos, A.; Lombó, F.; Braña, A.F.; Rohr, J.; Méndez, C.; Salas, J.A. Biosynthesis of elloramycin in Streptomyces olivaceus requires glycosylation by enzymes encoded outside the aglycon cluster. Microbiology 2008, 154, 781–788. [Google Scholar] [CrossRef]
- Finlay, A.C.; Hobby, G.L.; P’an, S.Y.; Regna, P.P.; Routien, J.B.; Seeley, D.B.; Shull, G.M.; Sobin, B.A.; Solomons, I.A.; Vinson, J.W.; et al. Terramycin, a new antibiotic. Science 1950, 111, 85. [Google Scholar] [CrossRef]
- Duggar, B.M. Aureomycin: A Product of the Continuing Search for New Antibiotics. Ann. N. Y. Acad. Sci. 1948, 51, 177–181. [Google Scholar] [CrossRef]
- Tymiak, A.A.; Aklonis, C.; Bolgar, M.S.; Kahle, A.D.; Kirsch, D.R.; O’Sullivan, J.; Porubcan, M.A.; Principe, P.; Trejo, W.H. Dactylocyclines: Novel tetracycline glycosides active against tetracycline-resistant bacteria. J. Org. Chem. 1993, 58, 535–537. [Google Scholar] [CrossRef]
- Hatsu, M.; Sasaki, T.; Gomi, S.; Kodama, Y.; Sezaki, M.; Inouye, S.; Kondo, S. A new tetracycline antibiotic with antitumor activity. II. The structural elucidation of SF2575. J. Antibiot. 1992, 45, 325–330. [Google Scholar] [CrossRef]
- Pickens, L.B.; Tang, Y. Decoding and engineering tetracycline biosynthesis. Metab. Eng. 2009, 11, 69–75. [Google Scholar] [CrossRef]
- Kabuto, C.; Silverton, J.V.; Akiyama, T.; Sankawa, U.; Hutchison, R.D.; Steyn, P.S.; Vleggaar, R. X-ray structure of viridicatumtoxin: A new class of mycotoxin from Penicillium viridicatum Westling. J. Chem. Soc. Chem. Commun. 1976, 18, 728–729. [Google Scholar] [CrossRef]
- Thomas, R. A Biosynthetic Classification of Fungal and Streptomycete Fused-Ring Aromatic Polyketides. ChemBioChem 2001, 2, 612–627. [Google Scholar] [CrossRef]
- Momose, I.; Chen, W.; Nakamura, H.; Naganawa, H.; Iinuma, H.; Takeuchi, T. Polyketomycin, a New Antibiotic from Streptomyces sp. MK277-AF1. II. Structure Determination. J. Antibiot. 1998, 51, 26–32. [Google Scholar] [CrossRef]
- Mitscher, L.A.; Juvarkar, J.V.; Rosenbrook, W.; Andres, W.W.; Schenck, J.R.; Egan, R.S. Structure of chelocardin, a novel tetracycline antibiotic. J. Am. Chem. Soc. 1970, 92, 6070–6071. [Google Scholar] [CrossRef]
- Xuan, L.-J.; Xu, S.-H.; Zhang, H.-L.; Xu, Y.-M.; Chen, M.-Q. Dutomycin, a new anthracycline antibiotic from Streptomyces. J. Antibiot. 1992, 45, 1974–1976. [Google Scholar] [CrossRef]
- Herold, K.; Gollmick, F.A.; Groth, I.; Roth, M.; Menzel, K.D.; Möllmann, U.; Gräfe, U.; Hertweck, C. Cervimycin A–D: A Polyketide Glycoside Complex from a Cave Bacterium Can Defeat Vancomycin Resistance. Chem. Eur. J. 2005, 11, 5523–5530. [Google Scholar] [CrossRef]
- Wu, H.; Selvaraj, K.; Yang, G.; Wang, Y.; Chen, G. Study for C4-O-Glycosylation of Tetracycline. Tetrahedron Lett. 2023, 133, 154829. [Google Scholar] [CrossRef]
- Rohr, J.; Weißbach, U.; Beninga, C.; Künzel, E.; Rohr, J.; Siems, K.; Bindseil, K.U.; Lombó, F.; Prado, L.; Braña, A.F.; et al. The structures of premithramycinone and demethylpremithramycinone, plausible early intermediates of the aureolic acid group antibiotic mithramycin. Chem. Commun. 1998, 437–438. [Google Scholar] [CrossRef]
- Lombó, F.; Siems, K.; Braña, A.F.; Méndez, C.; Bindseil, K.; Salas, J.A. Cloning and insertional inactivation of Streptomyces argillaceus genes involved in the earliest steps of biosynthesis of the sugar moieties of the antitumor polyketide mithramycin. J. Bacteriol. 1997, 179, 3354–3357. [Google Scholar] [CrossRef] [PubMed]
- Berlin, Y.A.; Chuprunova, O.A.; Klyashchitskii, B.A.; Kolosov, M.N.; Peck, G.Y.; Piotrovich, L.A.; Shemyakin, M.M.; Vasina, I.V. Olivomycin. III. The structure of olivin. Tetrahedron Lett. 1966, 7, 1425–1430. [Google Scholar] [CrossRef]
- Stevenson, L.J.; Bracegirdle, J.; Liu, L.; Sharrock, A.V.; Ackerley, D.F.; Keyzers, R.A.; Owen, J.G. Metathramycin, a new bioactive aureolic acid discovered by heterologous expression of a metagenome derived biosynthetic pathway. RSC Chem. Biol. 2021, 2, 556–567. [Google Scholar] [CrossRef]
- Rohr, J.; Méndez, C.; Salas, J.A. The Biosynthesis of Aureolic Acid Group Antibiotics. Bioorg. Chem. 1999, 27, 41–54. [Google Scholar] [CrossRef]
- Wheeler, R.; Yu, X.; Hou, C.; Mitra, P.; Chen, J.M.; Herkules, F.; Ivanov, D.N.; Tsodikov, O.V.; Rohr, J. Discovery of a Cryptic Intermediate in Late Steps of Mithramycin Biosynthesis. Angew. Chem. Int. Ed. 2020, 59, 826–832. [Google Scholar] [CrossRef] [PubMed]
- Sezaki, M.; Kondo, S.; Maeda, K.; Umezawa, H.; Ohno, M. The structure of aquayamycin. Tetrahedron 1970, 26, 5171–5190. [Google Scholar] [CrossRef] [PubMed]
- Yushchuk, O.; Kharel, M.; Ostash, I.; Ostash, B. Landomycin biosynthesis and its regulation in Streptomyces. Appl. Microbiol. Biotechnol. 2019, 103, 1659–1665. [Google Scholar] [CrossRef] [PubMed]
- Kharel, M.K.; Pahari, P.; Shepherd, M.D.; Tibrewal, N.; Nybo, S.E.; Shaaban, K.A.; Rohr, J. Angucyclines: Biosynthesis, mode-of-action, new natural products, and synthesis. Nat. Prod. Rep. 2012, 29, 264–325. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, E.; Ogasawara, Y.; Liu, H.-W. A Biosynthetic Pathway for BE-7585A, a 2-Thiosugar-Containing Angucycline-Type Natural Product. J. Am. Chem. Soc. 2010, 132, 7405–7417. [Google Scholar] [CrossRef] [PubMed]
- Gould, S.J.; Halley, K.A. Biosynthesis of the benz[a]anthraquinone antibiotic PD 116198: Evidence for a rearranged skeleton. J. Am. Chem. Soc. 1991, 113, 5092–5093. [Google Scholar] [CrossRef]
- Kharel, M.K.; Pahari, P.; Shaaban, K.A.; Wang, G.; Morris, C.; Rohr, J. Elucidation of post-PKS tailoring steps involved in landomycin biosynthesis. Org. Biomol. Chem. 2012, 10, 4256. [Google Scholar] [CrossRef]
- Liu, M.; Yang, Y.J.; Gong, G.; Li, Z.; Zhang, L.; Guo, L.; Xu, B.; Zhang, S.M.; Xie, Z.P. Angucycline and angucyclinone derivatives from the marine-derived Streptomyces sp. Chirality 2022, 34, 421–427. [Google Scholar] [CrossRef]
- Asolkar, R.N.; Kirkland, T.N.; Jensen, P.R.; Fenical, W. Arenimycin, an antibiotic effective against rifampin- and methicillin-resistant Staphylococcus aureus from the marine actinomycete Salinispora arenicola. J. Antibiot. 2010, 63, 37–39. [Google Scholar] [CrossRef] [PubMed]
- Tsunakawa, M.; Nishio, M.; Ohkuma, H.; Tsuno, T.; Konishi, M.; Naito, T.; Oki, T.; Kawaguchi, H. The structure of pradimicins A, B and C: A novel family of antifungal antibiotics. J. Org. Chem. 1989, 54, 2532–2536. [Google Scholar] [CrossRef]
- Walsh, T.J.; Giri, N. Pradimicins: A novel class of broad-spectrum antifungal compounds. Eur. J. Clin. Microbiol. Infect. Dis. 1997, 16, 93–97. [Google Scholar] [CrossRef] [PubMed]
- Kakushima, M.; Sawada, Y.; Nishio, M.; Tsuno, T.; Oki, T. Biosynthesis of pradimicin A. J. Org. Chem. 1989, 54, 2536–2539. [Google Scholar] [CrossRef]
- Kakinuma, S.; Suzuki, K.; Hatori, M.; Saitoh, K.; Hasegawa, T.; Furumai, T.; Oki, T. Biosynthesis of the pradimicin family of antibiotics. III. Biosynthetic pathway of both pradimicins and benanomicins. J. Antibiot. 1993, 46, 430–440. [Google Scholar] [CrossRef] [PubMed]
- Jha, A.K.; Paudel, S.; Dhakal, D.; Van, P.T.T.; Ghimire, G.P.; Sohng, J.K. Genetic evidence for the involvement of glycosyltransferase PdmQ and PdmS in biosynthesis of pradimicin from Actinomadura hibisca. Microbiol. Res. 2015, 174, 9–16. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, X.; Xiao, Z.; Zhou, J.; Song, X.; Wang, X.; Hu, L.; Wang, Y.; Sun, P.; Wang, W.; et al. O-methyltransferase-like enzyme catalyzed diazo installation in polyketide biosynthesis. Nat. Commun. 2023, 14, 5372. [Google Scholar] [CrossRef]
- Nakagawa, Y.; Yukishige, I. Chapter 1—Molecular architecture and therapeutic potential of lectin mimics. In Advances in Carbohydrate Chemistry and Biochemistry; Horton, D., Ed.; Academic Press: Cambridge, MA, USA, 2012; Volume 68, pp. 1–58. [Google Scholar]
- Schmitz, H.; Crook, K.E., Jr.; Bush, J.A. Hedamycin, a new antitumor antibiotic. I. Production, isolation, and characterization. Antimicrob. Agents Chemother. 1966, 6, 606–612. [Google Scholar] [PubMed]
- Bradner, W.T.; Heinemann, B.; Gourevitch, A. Hedamycin, a new antitumor antibiotic. II. Biological properties. Antimicrob. Agents Chemother. 1966, 1966, 613–618. [Google Scholar]
- Shirahata, K.; Iida, T.; Hirayama, N. Structures of trioxacarcin A, a new antitumor antibiotic, and its related compounds. Tennen Yuki Kagobutsu Toronkai Koen Yoshishu 1981, 24, 199–206. [Google Scholar]
- Zhang, M.; Hou, X.-F.; Qi, L.-H.; Yin, Y.; Li, Q.; Pan, H.-X.; Chen, X.-Y.; Tang, G.-L. Biosynthesis of trioxacarcin revealing a different starter unit and complex tailoring steps for type II polyketide synthase. Chem. Sci. 2015, 6, 3440–3447. [Google Scholar] [CrossRef]
- Das, A.; Khosla, C. In Vivo and In Vitro Analysis of the Hedamycin Polyketide Synthase. Chem. Biol. 2009, 16, 1197–1207. [Google Scholar] [CrossRef]
- Hansen, M.; Yun, S.; Hurley, L. Hedamycin intercalates the DNA helix and, through carbohydrate-mediated recognition in the minor groove, directs N7-alkylation of guanine in the major groove in a sequence-specific manner. Chem. Biol. 1995, 2, 229–240. [Google Scholar] [CrossRef]
- Pfoh, R.; Laatsch, H.; Sheldrick, G.M. Crystal structure of trioxacarcin A covalently bound to DNA. Nucleic Acids Res. 2008, 36, 3508–3514. [Google Scholar] [CrossRef]
- Aoyama, T.; Naganawa, H.; Muraoka, Y.; Nakamura, H.; Aoyagi, T.; Takeuchi, T.; Iitaka, Y. Benastatins A and B, new inhibitors of glutathione S-transferase, produced by Streptomyces sp. MI384-DF12. II. Structure determination of benastatins A and B. J. Antibiot. 1992, 45, 1391–1396. [Google Scholar] [CrossRef]
- Lackner, G.; Schenk, A.; Xu, Z.; Reinhardt, K.; Yunt, Z.S.; Piel, J.; Hertweck, C. Biosynthesis of Pentangular Polyphenols: Deductions from the Benastatin and Griseorhodin Pathways. J. Am. Chem. Soc. 2007, 129, 9306–9312. [Google Scholar] [CrossRef]
- Xu, Z.; Schenk, A.; Hertweck, C. Molecular Analysis of the Benastatin Biosynthetic Pathway and Genetic Engineering of Altered Fatty Acid−Polyketide Hybrids. J. Am. Chem. Soc. 2007, 129, 6022–6030. [Google Scholar] [CrossRef]
- Brockmann, H.; Schmidt-Kastner, G. Resistomycin, a new antibiotic from actinomycetes. Sci. Nat. 1951, 38, 479. [Google Scholar] [CrossRef]
- Jakobi, K.; Hertweck, C. A Gene Cluster Encoding Resistomycin Biosynthesis in Streptomyces resistomycificus; Exploring Polyketide Cyclization beyond Linear and Angucyclic Patterns. J. Am. Chem. Soc. 2004, 126, 2298–2299. [Google Scholar] [CrossRef] [PubMed]
- Zaleta-Rivera, K.; Charkoudian, L.K.; Ridley, C.P.; Khosla, C. Cloning, Sequencing, Heterologous Expression, and Mechanistic Analysis of A-74528 Biosynthesis. J. Am. Chem. Soc. 2010, 132, 9122–9128. [Google Scholar] [CrossRef] [PubMed]
- Miyairi, N.; Sakai, H.-I.; Konomi, T.; Imanaka, H. Enterocin, a new antibiotic taxonomy, isolation and characterization. J. Antibiot. 1976, 29, 227–235. [Google Scholar] [CrossRef]
- Tokuma, Y.; Miyairi, N.; Morimoto, Y. Structure of enterocin; X-ray analysis of m-bromobenzoyl enterocin dihydrate. J. Antibiot. 1976, 29, 1114–1116. [Google Scholar] [CrossRef] [PubMed]
- Xiang, L.; Kalaitzis, J.A.; Moore, B.S. EncM, a versatile enterocin biosynthetic enzyme involved in Favorskii oxidative rearrangement, aldol condensation, and heterocycle-forming reactions. Proc. Natl. Acad. Sci. USA 2004, 101, 15609–15614. [Google Scholar] [CrossRef] [PubMed]
- Teufel, R.; Miyanaga, A.; Michaudel, Q.; Stull, F.; Louie, G.; Noel, J.P.; Baran, P.S.; Palfey, B.; Moore, B.S. Flavin-mediated dual oxidation controls an enzymatic Favorskii-type rearrangement. Nature 2013, 503, 552–556. [Google Scholar] [CrossRef] [PubMed]
- Maglangit, F.; Deng, H. Cell Factory for Phenylnaphthacenoid Polyketide Production. SynBio 2023, 1, 89–102. [Google Scholar] [CrossRef]
- Maglangit, F.; Fang, Q.; Leman, V.; Soldatou, S.; Ebel, R.; Kyeremeh, K.; Deng, H. Accramycin A, a New Aromatic Polyketide, from the Soil Bacterium, Streptomyces sp. MA37. Molecules 2019, 24, 3384. [Google Scholar] [CrossRef]
- Maglangit, F.; Zhang, Y.; Kyeremeh, K.; Deng, H. Discovery of New Antibacterial Accramycins from a Genetic Variant of the Soil Bacterium, Streptomyces sp. MA37. Biomolecules 2020, 10, 1464. [Google Scholar] [CrossRef]
- Monciardini, P.; Bernasconi, A.; Iorio, M.; Brunati, C.; Sosio, M.; Campochiaro, L.; Landini, P.; Maffioli, S.I.; Donadio, S. Antibacterial Aromatic Polyketides Incorporating the Unusual Amino Acid Enduracididine. J. Nat. Prod. 2019, 82, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.-S.; Brady, S.F. Mining Soil Metagenomes to Better Understand the Evolution of Natural Product Structural Diversity: Pentangular Polyphenols as a Case Study. J. Am. Chem. Soc. 2014, 136, 18111–18119. [Google Scholar] [CrossRef]
- Iorio, M.; Cruz, J.; Simone, M.; Bernasconi, A.; Brunati, C.; Sosio, M.; Donadio, S.; Maffioli, S.I. Antibacterial Paramagnetic Quinones from Actinoallomurus. J. Nat. Prod. 2017, 80, 819–827. [Google Scholar] [CrossRef]
- Herath, K.B.; Jayasuriya, H.; Guan, Z.; Schulman, M.; Ruby, C.; Sharma, N.; Macnaul, K.; Menke, J.G.; Kodali, S.; Galgoci, A.; et al. Anthrabenzoxocinones from Streptomyces sp. as Liver X Receptor Ligands and Antibacterial Agents. J. Nat. Prod. 2005, 68, 1437–1440. [Google Scholar] [CrossRef]
- Kodali, S.; Galgoci, A.; Young, K.; Painter, R.; Silver, L.L.; Herath, K.B.; Singh, S.B.; Cully, D.; Barrett, J.F.; Schmatz, D.; et al. Determination of Selectivity and Efficacy of Fatty Acid Synthesis Inhibitors. J. Biol. Chem. 2005, 280, 1669–1677. [Google Scholar] [CrossRef]
- Ma, M.; Rateb, M.E.; Teng, Q.; Yang, D.; Rudolf, J.D.; Zhu, X.; Huang, Y.; Zhao, L.-X.; Jiang, Y.; Li, X.; et al. Angucyclines and Angucyclinones from Streptomyces sp. CB01913 Featuring C-Ring Cleavage and Expansion. J. Nat. Prod. 2015, 78, 2471–2480. [Google Scholar] [CrossRef] [PubMed]
- Elsayed, S.S.; Van Der Heul, H.U.; Xiao, X.; Nuutila, A.; Baars, L.R.; Wu, C.; Metsä-Ketelä, M.; Van Wezel, G.P. Unravelling key enzymatic steps in C-ring cleavage during angucycline biosynthesis. Commun. Chem. 2023, 6, 281. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.-Q.; Li, G.; Lou, H.-X. Isolation, Biosynthesis, and Biological Activity of Polycyclic Xanthones from Actinomycetes. Front. Microbiol. 2022, 13, 922089. [Google Scholar] [CrossRef]
- Kudo, F.; Yonezawa, T.; Komatsubara, A.; Mizoue, K.; Eguchi, T. Cloning of the biosynthetic gene cluster for naphthoxanthene antibiotic FD-594 from Streptomyces sp. TA-0256. J. Antibiot. 2011, 64, 123–132. [Google Scholar] [CrossRef]
- Kang, H.-S.; Brady, S.F. Arixanthomycins A–C: Phylogeny-Guided Discovery of Biologically Active eDNA-Derived Pentangular Polyphenols. ACS Chem. Biol. 2014, 9, 1267–1272. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wu, X.; Zhu, J.; Shen, Y. Amexanthomycins A–J, pentangular polyphenols produced by Amycolatopsis mediterranei S699∆rifA. Appl. Microbiol. Biotechnol. 2018, 102, 689–702. [Google Scholar] [CrossRef]
- Warnick-Pickle, D.J.; Byrne, K.M.; Pandey, R.C.; White, R.J. Fredericamycin A a new antitumor antibiotic. II. Biological properties. J. Antibiot. 1981, 34, 1402–1407. [Google Scholar] [CrossRef]
- Misra, R.; Pandey, R.C.; Silverton, J.V. Fredericamycin A, an antitumor antibiotic of a novel skeletal type. J. Am. Chem. Soc. 1982, 104, 4478–4479. [Google Scholar] [CrossRef]
- Pandey, R.C.; Toussaint, M.W.; Stroshane, R.M.; Kalita, C.C.; Aszalos, A.A.; Garretson, A.L.; Wei, T.T.; Byrne, K.M.; Stroshane, R.M.; White, R.J. Fredericamycin A a new antitumor antibiotic. I. Production, isolation and physicochemical properties. J. Antibiot. 1981, 34, 1389–1401. [Google Scholar] [CrossRef]
- Coronelli, C.; Pagani, H.; Bardone, M.R.; Lancini, G.C. Purpuromycin, a New Antibiotic Isolated from Actinoplanes Ianthinogenes N. Sp. J. Antibiot. 1974, 27, 161–168. [Google Scholar] [CrossRef]
- Eckardt, K.; Tresselt, D.; Ihn, W. Chemical structure of antibiotic Griseorhodin A. Z. Chem. 1976, 16, 486. [Google Scholar] [CrossRef]
- Byrne, K.M.; Hilton, B.D.; White, R.J.; Misra, R.; Pandey, R.C. Biosynthesis of fredericamycin A, a new antitumor antibiotic. Biochemistry 1985, 24, 478–486. [Google Scholar] [CrossRef]
- Das, A.; Szu, P.-H.; Fitzgerald, J.T.; Khosla, C. Mechanism and Engineering of Polyketide Chain Initiation in Fredericamycin Biosynthesis. J. Am. Chem. Soc. 2010, 132, 8831–8833. [Google Scholar] [CrossRef]
- Wendt-Pienkowski, E.; Huang, Y.; Zhang, J.; Li, B.; Jiang, H.; Kwon, H.; Hutchinson, C.R.; Shen, B. Cloning, Sequencing, Analysis, and Heterologous Expression of the Fredericamycin Biosynthetic Gene Cluster from Streptomyces griseus. J. Am. Chem. Soc. 2005, 127, 16442–16452. [Google Scholar] [CrossRef]
- Chen, Y.; Wendt-Pienkowski, E.; Ju, J.; Lin, S.; Rajski, S.R.; Shen, B. Characterization of FdmV as an Amide Synthetase for Fredericamycin A Biosynthesis in Streptomyces griseus ATCC 43944. J. Biol. Chem. 2010, 285, 38853–38860. [Google Scholar] [CrossRef]
- Li, A.; Piel, J. A Gene Cluster from a Marine Streptomyces Encoding the Biosynthesis of the Aromatic Spiroketal Polyketide Griseorhodin A. Chem. Biol. 2002, 9, 1017–1026. [Google Scholar] [CrossRef]
- Toplak, M.; Saleem-Batcha, R.; Piel, J.; Teufel, R. Catalytic Control of Spiroketal Formation in Rubromycin Polyketide Biosynthesis. Angew. Chem. Int. Ed. 2021, 60, 26960–26970. [Google Scholar] [CrossRef]
- Frensch, B.; Lechtenberg, T.; Kather, M.; Yunt, Z.; Betschart, M.; Kammerer, B.; Lüdeke, S.; Müller, M.; Piel, J.; Teufel, R. Enzymatic spiroketal formation via oxidative rearrangement of pentangular polyketides. Nat. Commun. 2021, 12, 1431. [Google Scholar] [CrossRef] [PubMed]
- Yunt, Z.; Reinhardt, K.; Li, A.; Engeser, M.; Dahse, H.-M.; Gütschow, M.; Bruhn, T.; Bringmann, G.; Piel, J. Cleavage of Four Carbon−Carbon Bonds during Biosynthesis of the Griseorhodin A Spiroketal Pharmacophore. J. Am. Chem. Soc. 2009, 131, 2297–2305. [Google Scholar] [CrossRef] [PubMed]
- Craveri, R.; Coronelli, C.; Pagani, H.; Sensi, P. Thermorubin, a new antibiotic from a thermoactinomycete. Clin. Med. 1964, 71, 511. [Google Scholar] [PubMed]
- Johnson, F.; Chandra, B.; Iden, C.R.; Naiksatam, P.; Kahen, R.; Okaya, Y.; Lin, S.-Y. Thermorubin 1. Structure studies. J. Am. Chem. Soc. 1980, 102, 5580–5585. [Google Scholar] [CrossRef]
- Aragozzini, F.; Craveri, R.; Maconi, E.; Ricca, G.S.; Scolastico, C. Thermorubin biosynthesis: Evidence for the involvement of both salicylic acid and an undecaketide. J. Chem. Soc. Perkin Trans. 1 1988, 1865. [Google Scholar] [CrossRef]
- McCord, J.P.; Kohanov, Z.A.; Lowell, A.N. Thermorubin Biosynthesis Initiated by a Salicylate Synthase Suggests an Unusual Conversion of Phenols to Pyrones. ACS Chem. Biol. 2022, 17, 3169–3177. [Google Scholar] [CrossRef] [PubMed]
- Simonitsch, E.; Eisenhuth, W.; Stamm, O.A.; Schmid, H. Über die Struktur des Chartreusins (Vorläufige Mitteilung). Helv. Chim. Acta 1960, 43, 58–63. [Google Scholar] [CrossRef]
- Leach, B.E.; Calhoun, K.M.; Johnson, L.E.; Teeters, C.M.; Jackson, W.G. Chartreusin, a New Antibiotic Produced by Streptomyces chartreusis, a New Species. J. Am. Chem. Soc. 1953, 75, 4011–4012. [Google Scholar] [CrossRef]
- Konishi, M.; Sugawara, K.; Kofu, F.; Nishiyama, Y.; Tomita, K.; Miyaki, T.; Kawaguchi, H. Elsamicins, new antitumor antibiotics related to chartreusin. I. Production, isolation, characterization and antitumor activity. J. Antibiot. 1986, 39, 784–791. [Google Scholar] [CrossRef] [PubMed]
- Jiao, F.W.; Wang, Y.S.; You, X.T.; Wei, W.; Chen, Y.; Yang, C.L.; Guo, Z.K.; Zhang, B.; Liang, Y.; Tan, R.X.; et al. An NADPH-Dependent Ketoreductase Catalyses the Tetracyclic to Pentacyclic Skeletal Rearrangement in Chartreusin Biosynthesis. Angew. Chem. Int. Ed. 2021, 60, 26378–26384. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.S.; Zhang, B.; Zhu, J.; Yang, C.L.; Guo, Y.; Liu, C.L.; Liu, F.; Huang, H.; Zhao, S.; Liang, Y.; et al. Molecular Basis for the Final Oxidative Rearrangement Steps in Chartreusin Biosynthesis. J. Am. Chem. Soc. 2018, 140, 10909–10914. [Google Scholar] [CrossRef]
- Xu, Z.; Jakobi, K.; Welzel, K.; Hertweck, C. Biosynthesis of the Antitumor Agent Chartreusin Involves the Oxidative Rearrangement of an Anthracyclic Polyketide. Chem. Biol. 2005, 12, 579–588. [Google Scholar] [CrossRef]
- Ueberschaar, N.; Xu, Z.; Scherlach, K.; Metsä-Ketelä, M.; Bretschneider, T.; Dahse, H.-M.; Görls, H.; Hertweck, C. Synthetic Remodeling of the Chartreusin Pathway to Tune Antiproliferative and Antibacterial Activities. J. Am. Chem. Soc. 2013, 135, 17408–17416. [Google Scholar] [CrossRef]
- Ayer, S.W.; McInnes, A.G.; Thibault, P.; Walter, J.A.; Doull, J.L.; Parnell, T.; Vining, L.C. Jadomycin, a novel 8H-benz[b]oxazolo[3,2-f]phenanthridine antibiotic from from streptomyces venezuelae ISP5230. Tetrahedron Lett. 1991, 32, 6301–6304. [Google Scholar] [CrossRef]
- Doull, J.L.; Ayer, S.W.; Singh, A.K.; Thibault, P. Production of a novel polyketide antibiotic, jadomycin B, by Streptomyces venezuelae following heat shock. J. Antibiot. 1993, 46, 869–871. [Google Scholar] [CrossRef]
- De Koning, C.B.; Ngwira, K.J.; Rousseau, A.L. Chapter Two—Biosynthesis, synthetic studies, and biological activities of the jadomycin alkaloids and related analogues. Alkaloids Chem. Biol. 2020, 84, 125–199. [Google Scholar]
- Rix, U.; Zheng, J.; Remsing Rix, L.L.; Greenwell, L.; Yang, K.; Rohr, J. The Dynamic Structure of Jadomycin B and the Amino Acid Incorporation Step of Its Biosynthesis. J. Am. Chem. Soc. 2004, 126, 4496–4497. [Google Scholar] [CrossRef] [PubMed]
- Robertson, A.W.; Martinez-Farina, C.F.; Smithen, D.A.; Yin, H.; Monro, S.; Thompson, A.; Mcfarland, S.A.; Syvitski, R.T.; Jakeman, D.L. Eight-Membered Ring-Containing Jadomycins: Implications for Non-enzymatic Natural Products Biosynthesis. J. Am. Chem. Soc. 2015, 137, 3271–3275. [Google Scholar] [CrossRef]
- Bililign, T.; Griffith, B.R.; Thorson, J.S. Structure, activity, synthesis and biosynthesis of aryl-C-glycosides. Nat. Prod. Rep. 2005, 22, 742. [Google Scholar] [CrossRef]
- Rohr, J.; Hertweck, C. 1.07—Type II PKS. In Comprehensive Natural Products II; Liu, H.-W., Mander, L., Eds.; Elsevier: Oxford, UK, 2010; pp. 227–303. [Google Scholar]
- Xie, S.; Zhang, L. Type II Polyketide Synthases: A Bioinformatics-Driven Approach. ChemBioChem 2023, 24, e202200775. [Google Scholar] [CrossRef]
- Villebro, R.; Shaw, S.; Blin, K.; Weber, T. Sequence-based classification of type II polyketide synthase biosynthetic gene clusters for antiSMASH. J. Ind. Microbiol. Biotechnol. 2019, 46, 469–475. [Google Scholar] [CrossRef]
- Zhang, W.; Tang, Y. Chapter 16 In Vitro Analysis of Type II Polyketide Synthase. In Methods Enzymology; Academic Press: Cambridge, MA, USA, 2009; Volume 459, pp. 367–393. [Google Scholar]
- Kharel, M.K.; Rohr, J. Delineation of gilvocarcin, jadomycin, and landomycin pathways through combinatorial biosynthetic enzymology. Curr. Opin. Chem. Biol. 2012, 16, 150–161. [Google Scholar] [CrossRef]
- Koch, A.A.; Schmidt, J.J.; Lowell, A.N.; Hansen, D.A.; Coburn, K.M.; Chemler, J.A.; Sherman, D.H. Probing Selectivity and Creating Structural Diversity through Hybrid Polyketide Synthases. Angew. Chem. Int. Ed. 2020, 59, 13575–13580. [Google Scholar] [CrossRef] [PubMed]
- Bisang, C.; Long, P.F.; Corte’S, J.; Westcott, J.; Crosby, J.; Matharu, A.-L.; Cox, R.J.; Simpson, T.J.; Staunton, J.; Leadlay, P.F. A chain initiation factor common to both modular and aromatic polyketide synthases. Nature 1999, 401, 502–505. [Google Scholar] [CrossRef]
- Bräuer, A.; Zhou, Q.; Grammbitter, G.L.C.; Schmalhofer, M.; Rühl, M.; Kaila, V.R.I.; Bode, H.B.; Groll, M. Structural snapshots of the minimal PKS system responsible for octaketide biosynthesis. Nat. Chem. 2020, 12, 755–763. [Google Scholar] [CrossRef]
- Yang, D.; Eun, H.; Prabowo, C.P.S. Metabolic Engineering and Synthetic Biology Approaches for the Heterologous Production of Aromatic Polyketides. Int. J. Mol. Sci. 2023, 24, 8923. [Google Scholar] [CrossRef]
- Shen, B.; Hutchinson, C.R. Enzymatic Synthesis of a Bacterial Polyketide from Acetyl and Malonyl Coenzyme A. Science 1993, 262, 1535–1540. [Google Scholar] [CrossRef]
- Bao, W.; Wendt-Pienkowski, E.; Hutchinson, C.R. Reconstitution of the Iterative Type II Polyketide Synthase for Tetracenomycin F2 Biosynthesis. Biochemistry 1998, 37, 8132–8138. [Google Scholar] [CrossRef]
- Carreras, C.W.; Pieper, R.; Khosla, C. Efficient Synthesis of Aromatic Polyketides In Vitro by the Actinorhodin Polyketide Synthase. J. Am. Chem. Soc. 1996, 118, 5158–5159. [Google Scholar] [CrossRef]
- Carreras, C.W.; Khosla, C. Purification and In Vitro Reconstitution of the Essential Protein Components of an Aromatic Polyketide Synthase. Biochemistry 1998, 37, 2084–2088. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Jang, W.D.; Lee, S.Y. Production of Carminic Acid by Metabolically Engineered Escherichia coli. J. Am. Chem. Soc. 2021, 143, 5364–5377. [Google Scholar] [CrossRef] [PubMed]
- Tropf, S.; Peter Revill, W.; Bibb, M.J.; Hopwood, D.A.; Schweizer, M. Heterologously expressed acyl carrier protein domain of rat fatty acid synthase functions in Escherichia coli fatty acid synthase and Streptomyces coelicolor polyketide synthase systems. Chem. Biol. 1998, 5, 135–146. [Google Scholar] [CrossRef] [PubMed]
- Reed, M.A.C.; Schweizer, M.; Szafranska, A.E.; Arthur, C.; Nicholson, T.P.; Cox, R.J.; Crosby, J.; Crump, M.P.; Simpson, T.J. The type I rat fatty acid synthase ACP shows structural homology and analogous biochemical properties to type II ACPs. Org. Biomol. Chem. 2003, 1, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Hua, K.; Liu, D.; Wu, Z.-L.; Wang, Y.; Zhang, H.; Deng, Z.; Pfeifer, B.A.; Jiang, M. Heterologous Biosynthesis of Type II Polyketide Products Using E. coli. ACS Chem. Biol. 2020, 15, 1177–1183. [Google Scholar] [CrossRef] [PubMed]
- Li, K.K.; Cho, Y.I.; Tran, M.A.; Wiedemann, C.; Koweek, R.S.; Hoàng, N.K.; Hamrick, G.S.; Bowen, M.A.; Kokona, B.; Beld, J.; et al. Strategic Engineering Unlocks In Vitro Type II Polyketide Biosynthesis; Cold Spring Harbor Laboratory: Cold Spring Harbor, NY, USA, 2023. [Google Scholar] [CrossRef]
- Beld, J.; Sonnenschein, E.C.; Vickery, C.R.; Noel, J.P.; Burkart, M.D. The phosphopantetheinyl transferases: Catalysis of a post-translational modification crucial for life. Nat. Prod. Rep. 2014, 31, 61–108. [Google Scholar] [CrossRef] [PubMed]
- Summers, R.G.; Ali, A.; Shen, B.; Wessel, W.A.; Hutchinson, C.R. Malonyl-Coenzyme A:Acyl Carrier Protein Acyltransferase of Streptomyces glaucescens: A Possible Link between Fatty Acid and Polyketide Biosynthesis. Biochemistry 1995, 34, 9389–9402. [Google Scholar] [CrossRef] [PubMed]
- Arthur, C.J.; Szafranska, A.; Evans, S.E.; Findlow, S.C.; Burston, S.G.; Owen, P.; Clark-Lewis, I.; Simpson, T.J.; Crosby, J.; Crump, M.P. Self-Malonylation Is an Intrinsic Property of a Chemically Synthesized Type II Polyketide Synthase Acyl Carrier Protein. Biochemistry 2005, 44, 15414–15421. [Google Scholar] [CrossRef]
- Georgopoulos, C.P.; Hendrix, R.W.; Casjens, S.R.; Kaiser, A.D. Host participation in bacteriophage lambda head assembly. J. Mol. Biol. 1973, 76, 45–60. [Google Scholar] [CrossRef]
- Lambalot, R.H.; Gehring, A.M.; Flugel, R.S.; Zuber, P.; LaCelle, M.; Marahiel, M.A.; Reid, R.; Khosla, C.; Walsh, C.T. A new enzyme superfamily—The phosphopantetheinyl transferases. Chem. Biol. 1996, 3, 923–936. [Google Scholar] [CrossRef] [PubMed]
- Pfeifer, B.A.; Admiraal, S.J.; Gramajo, H.; Cane, D.E.; Khosla, C. Biosynthesis of Complex Polyketides in a Metabolically Engineered Strain of E. coli. Science 2001, 291, 1790–1792. [Google Scholar] [CrossRef]
- Tang, Y.; Tsai, S.-C.; Khosla, C. Polyketide Chain Length Control by Chain Length Factor. J. Am. Chem. Soc. 2003, 125, 12708–12709. [Google Scholar] [CrossRef]
- Mcdaniel, R.; Ebert-Khosla, S.; Hopwood, D.A.; Khosla, C. Engineered Biosynthesis of Novel Polyketides: ActVII and actIV Genes Encode Aromatase and Cyclase Enzymes, Respectively. J. Am. Chem. Soc. 1994, 116, 10855–10859. [Google Scholar] [CrossRef]
- Brachmann, A.O.; Joyce, S.A.; Jenke-Kodama, H.; Schwär, G.; Clarke, D.J.; Bode, H.B. A Type II Polyketide Synthase is Responsible for Anthraquinone Biosynthesis in Photorhabdus luminescens. ChemBioChem 2007, 8, 1721–1728. [Google Scholar] [CrossRef]
- Stevens, D.C.; Conway, K.R.; Pearce, N.; Villegas-Peñaranda, L.R.; Garza, A.G.; Boddy, C.N. Alternative Sigma Factor Over-Expression Enables Heterologous Expression of a Type II Polyketide Biosynthetic Pathway in Escherichia coli. PLoS ONE 2013, 8, e64858. [Google Scholar] [CrossRef] [PubMed]
- Wall, J.G.; Plückthun, A. Effects of overexpressing folding modulators on the in vivo folding of heterologous proteins in Escherichia coli. Curr. Opin. Biotechnol. 1995, 6, 507–516. [Google Scholar] [CrossRef]
- Medema, M.H.; Breitling, R.; Takano, E. Chapter twenty-one—Synthetic Biology in Streptomyces Bacteria. In Methods Enzymology; Voigt, C., Ed.; Academic Press: Cambridge, MA, USA, 2011; Volume 497, pp. 485–502. [Google Scholar]
- Long, P.F.; Wilkinson, C.J.; Bisang, C.P.; Cortés, J.; Dunster, N.; Oliynyk, M.; Mccormick, E.; Mcarthur, H.; Mendez, C.; Salas, J.A.; et al. Engineering specificity of starter unit selection by the erythromycin-producing polyketide synthase. Mol. Microbiol. 2002, 43, 1215–1225. [Google Scholar] [CrossRef]
- Paulick, R.C.; Casey, M.L.; Whitlock, H.W. A carbon-13 nuclear magnetic resonance study of the biosynthesis of daunomycin from sodium acetate (carbon-13). J. Am. Chem. Soc. 1976, 98, 3370–3371. [Google Scholar] [CrossRef] [PubMed]
- Shaw, G.J.; Milne, G.W.A.; Minghetti, A. Propionate precursors in the biosynthesis of daunomycin and adriamycin: A 13C nuclear magnetic resonance study. Phytochemistry 1979, 18, 178–179. [Google Scholar] [CrossRef]
- Waldman, A.J.; Balskus, E.P. Lomaiviticin Biosynthesis Employs a New Strategy for Starter Unit Generation. Org. Lett. 2014, 16, 640–643. [Google Scholar] [CrossRef] [PubMed]
- Thomas, R.; Williams, D.J. Oxytetracycline biosynthesis: Origin of the carboxamide substituent. J. Chem. Soc. Chem. Commun. 1983, 677. [Google Scholar] [CrossRef]
- Wang, P.; Gao, X.; Chooi, Y.-H.; Deng, Z.; Tang, Y. Genetic characterization of enzymes involved in the priming steps of oxytetracycline biosynthesis in Streptomyces rimosus. Microbiology 2011, 157, 2401–2409. [Google Scholar] [CrossRef]
- Seto, H.; Sato, T.; Urano, S.; Uzawa, J.; Yonehara, H. Utilization of13C-13C coupling in structural and biosynthetic studies. VII1 the structure and biosynthesis of vulgamycin. Tetrahedron Lett. 1976, 17, 4367–4370. [Google Scholar] [CrossRef]
- Pickens, L.B.; Tang, Y. Oxytetracycline Biosynthesis. J. Biol. Chem. 2010, 285, 27509–27515. [Google Scholar] [CrossRef]
- Ames, B.D.; Korman, T.P.; Zhang, W.; Smith, P.; Vu, T.; Tang, Y.; Tsai, S.-C. Crystal structure and functional analysis of tetracenomycin ARO/CYC: Implications for cyclization specificity of aromatic polyketides. Proc. Natl. Acad. Sci. USA 2008, 105, 5349–5354. [Google Scholar] [CrossRef]
- Summers, R.G.; Wendt-Pienkowski, E.; Motamedi, H.; Hutchinson, C.R. Nucleotide sequence of the tcmII-tcmIV region of the tetracenomycin C biosynthetic gene cluster of Streptomyces glaucescens and evidence that the tcmN gene encodes a multifunctional cyclase-dehydratase-O-methyl transferase. J. Bacteriol. 1992, 174, 1810–1820. [Google Scholar] [CrossRef]
- Meurer, G.; Gerlitz, M.; Wendt-Pienkowski, E.; Vining, L.C.; Rohr, J.; Richard Hutchinson, C. Iterative type II polyketide synthases, cyclases and ketoreductases exhibit context-dependent behavior in the biosynthesis of linear and angular decapolyketides. Chem. Biol. 1997, 4, 433–443. [Google Scholar] [CrossRef]
- Thompson, T.B.; Katayama, K.; Watanabe, K.; Hutchinson, C.R.; Rayment, I. Structural and Functional Analysis of Tetracenomycin F2 Cyclase from Streptomyces glaucescens: A TYPE II POLYKETIDE CYCLASE. J. Biol. Chem. 2004, 279, 37956–37963. [Google Scholar] [CrossRef]
- Zhang, W.; Ames Brian, D.; Tsai, S.-C.; Tang, Y. Engineered Biosynthesis of a Novel Amidated Polyketide, Using the Malonamyl-Specific Initiation Module from the Oxytetracycline Polyketide Synthase. Appl. Environ. Microbiol. 2006, 72, 2573–2580. [Google Scholar] [CrossRef]
- Zhang, W.; Watanabe, K.; Wang, C.C.C.; Tang, Y. Investigation of Early Tailoring Reactions in the Oxytetracycline Biosynthetic Pathway. J. Biol. Chem. 2007, 282, 25717–25725. [Google Scholar] [CrossRef]
- Xu, W.; Raetz, L.B.; Wang, P.; Tang, Y. An ATP-dependent ligase catalyzes the fourth ring cyclization in tetracycline biosynthesis. Tetrahedron 2016, 72, 3599–3604. [Google Scholar] [CrossRef]
- Grammbitter, G.L.C.; Schmalhofer, M.; Karimi, K.; Shi, Y.-M.; Schöner, T.A.; Tobias, N.J.; Morgner, N.; Groll, M.; Bode, H.B. An Uncommon Type II PKS Catalyzes Biosynthesis of Aryl Polyene Pigments. J. Am. Chem. Soc. 2019, 141, 16615–16623. [Google Scholar] [CrossRef] [PubMed]
- Du, D.; Katsuyama, Y.; Onaka, H.; Fujie, M.; Satoh, N.; Shin-Ya, K.; Ohnishi, Y. Production of a Novel Amide-Containing Polyene by Activating a Cryptic Biosynthetic Gene Cluster in Streptomyces sp. MSC090213JE08. ChemBioChem 2016, 17, 1464–1471. [Google Scholar] [CrossRef] [PubMed]
- Bracegirdle, J.; Hou, P.; Nowak, V.V.; Ackerley, D.F.; Keyzers, R.A.; Owen, J.G. Skyllamycins D and E, Non-Ribosomal Cyclic Depsipeptides from Lichen-Sourced Streptomyces anulatus. J. Nat. Prod. 2021, 84, 2536–2543. [Google Scholar] [CrossRef] [PubMed]
- Bilyk, O.; Brötz, E.; Tokovenko, B.; Bechthold, A.; Paululat, T.; Luzhetskyy, A. New Simocyclinones: Surprising Evolutionary and Biosynthetic Insights. ACS Chem. Biol. 2016, 11, 241–250. [Google Scholar] [CrossRef]
- Petříčková, K.; Pospíšil, S.; Kuzma, M.; Tylová, T.; Jágr, M.; Tomek, P.; Chroňáková, A.; Brabcová, E.; Anděra, L.; Krištůfek, V.; et al. Biosynthesis of Colabomycin E, a New Manumycin-Family Metabolite, Involves an Unusual Chain-Length Factor. ChemBioChem 2014, 15, 1334–1345. [Google Scholar] [CrossRef] [PubMed]
- Rui, Z.; Petříčková, K.; Škanta, F.; Pospíšil, S.; Yang, Y.; Chen, C.-Y.; Tsai, S.-F.; Floss, H.G.; Petříček, M.; Yu, T.-W. Biochemical and Genetic Insights into Asukamycin Biosynthesis. J. Biol. Chem. 2010, 285, 24915–24924. [Google Scholar] [CrossRef]
- Zhang, J.; Yuzawa, S.; Thong, W.L.; Shinada, T.; Nishiyama, M.; Kuzuyama, T. Reconstitution of a Highly Reducing Type II PKS System Reveals 6π-Electrocyclization Is Required for o-Dialkylbenzene Biosynthesis. J. Am. Chem. Soc. 2021, 143, 2962–2969. [Google Scholar] [CrossRef]
- Hibi, G.; Shiraishi, T.; Umemura, T.; Nemoto, K.; Ogura, Y.; Nishiyama, M.; Kuzuyama, T. Discovery of type II polyketide synthase-like enzymes for the biosynthesis of cispentacin. Nat. Commun. 2023, 14, 8065. [Google Scholar] [CrossRef]
- Du, D.; Katsuyama, Y.; Horiuchi, M.; Fushinobu, S.; Chen, A.; Davis, T.D.; Burkart, M.D.; Ohnishi, Y. Structural basis for selectivity in a highly reducing type II polyketide synthase. Nat. Chem. Biol. 2020, 16, 776–782. [Google Scholar] [CrossRef]
- Schwartz, T.J.; Shanks, B.H.; Dumesic, J.A. Coupling chemical and biological catalysis: A flexible paradigm for producing biobased chemicals. Curr. Opin. Biotechnol. 2016, 38, 54–62. [Google Scholar] [CrossRef]
- Lowell, A.N.; Demars, M.D.; Slocum, S.T.; Yu, F.; Anand, K.; Chemler, J.A.; Korakavi, N.; Priessnitz, J.K.; Park, S.R.; Koch, A.A.; et al. Chemoenzymatic Total Synthesis and Structural Diversification of Tylactone-Based Macrolide Antibiotics through Late-Stage Polyketide Assembly, Tailoring, and C—H Functionalization. J. Am. Chem. Soc. 2017, 139, 7913–7920. [Google Scholar] [CrossRef]
- Cheon, S.; Kim, H.M.; Gustavsson, M.; Lee, S.Y. Recent trends in metabolic engineering of microorganisms for the production of advanced biofuels. Curr. Opin. Chem. Biol. 2016, 35, 10–21. [Google Scholar] [CrossRef]
- Dekishima, Y.; Lan, E.I.; Shen, C.R.; Cho, K.M.; Liao, J.C. Extending Carbon Chain Length of 1-Butanol Pathway for 1-Hexanol Synthesis from Glucose by Engineered Escherichia coli. J. Am. Chem. Soc. 2011, 133, 11399–11401. [Google Scholar] [CrossRef]
Starter Unit | Structure | Organism | Natural Product | Method of Identification |
---|---|---|---|---|
Propionate [170,171,172] | S. peucetius | Daunomycin, adriamycin, doxorubicin, lomaiviticin | Isotope enrichment, Gene knockout | |
Malonamate [173,174] | S. rimosus | Oxytetracycline | Isotope enrichment, Gene mutation | |
2-Methylbutyrate [81] | S. bottropensis | Trioxacarcin A | Isotope enrichment | |
Benzoate [175] | S. hygroscopicus | Enterocin | Isotope enrichment | |
Salicylate [124] | L. Sacchari | Thermorubin | Isotope enrichment | |
Hexanoyl [87] | S. ssp. A2991200 | Benastatin | Gene knockout |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rivers, M.A.J.; Lowell, A.N. Expanding the Biosynthetic Toolbox: The Potential and Challenges of In Vitro Type II Polyketide Synthase Research. SynBio 2024, 2, 85-111. https://doi.org/10.3390/synbio2010006
Rivers MAJ, Lowell AN. Expanding the Biosynthetic Toolbox: The Potential and Challenges of In Vitro Type II Polyketide Synthase Research. SynBio. 2024; 2(1):85-111. https://doi.org/10.3390/synbio2010006
Chicago/Turabian StyleRivers, Max A. J., and Andrew N. Lowell. 2024. "Expanding the Biosynthetic Toolbox: The Potential and Challenges of In Vitro Type II Polyketide Synthase Research" SynBio 2, no. 1: 85-111. https://doi.org/10.3390/synbio2010006
APA StyleRivers, M. A. J., & Lowell, A. N. (2024). Expanding the Biosynthetic Toolbox: The Potential and Challenges of In Vitro Type II Polyketide Synthase Research. SynBio, 2(1), 85-111. https://doi.org/10.3390/synbio2010006