Pangenome-Scale Mathematical Modelling of ANAMMOX Bacteria Metabolism
Abstract
:1. Introduction
2. Results
2.1. Overview of the ANAMMOX Pangenome-Scale Model
2.2. Redox Activities of ANAMMOX Bacteria
2.3. Flux Determination of the Central Carbon Metabolism
2.4. The ANAMMOX Electron Transport Chain
3. Discussion
4. Materials and Methods
4.1. Selection of ANAMMOX Genomes
4.2. Pangenome Generation
4.3. Formulation of the Biomass Objective Function of iRB399
4.4. Calculation of Growth-Associated Maintenance
4.5. Metabolic Network Reconstruction
4.6. Model Validation
4.7. In Silico Analysis of ANAMMOX Metabolism
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Green Ammonia Synthesis. Nat. Synth. 2023, 2, 581–582. [CrossRef]
- Leigh, G.J. The World’s Greatest Fix: A History of Nitrogen and Agriculture; Oxford University Press: Oxford, UK, 2004; ISBN 978-0-19-516582-1. [Google Scholar]
- Battye, W.; Aneja, V.P.; Schlesinger, W.H. Is Nitrogen the next Carbon? Earth’s Future 2017, 5, 894–904. [Google Scholar] [CrossRef]
- Howarth, R.W. Coastal Nitrogen Pollution: A Review of Sources and Trends Globally and Regionally. Harmful Algae 2008, 8, 14–20. [Google Scholar] [CrossRef]
- Brandes, J.A.; Devol, A.H.; Deutsch, C. New Developments in the Marine Nitrogen Cycle. Chem. Rev. 2007, 107, 577–589. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.; Okabe, S. Anammox-Based Technologies for Nitrogen Removal: Advances in Process Start-up and Remaining Issues. Chemosphere 2015, 141, 144–153. [Google Scholar] [CrossRef]
- Awata, T.; Oshiki, M.; Kindaichi, T.; Ozaki, N.; Ohashi, A.; Okabe, S. Physiological Characterization of an Anaerobic Ammonium-Oxidizing Bacterium Belonging to the “Candidatus Scalindua” Group. Appl. Environ. Microbiol. 2013, 79, 4145–4148. [Google Scholar] [CrossRef]
- Ali, M.; Oshiki, M.; Awata, T.; Isobe, K.; Kimura, Z.; Yoshikawa, H.; Hira, D.; Kindaichi, T.; Satoh, H.; Fujii, T.; et al. Physiological Characterization of Anaerobic Ammonium Oxidizing Bacterium “Candidatus Jettenia caeni”. Environ. Microbiol. 2015, 17, 2172–2189. [Google Scholar] [CrossRef]
- Narita, Y.; Zhang, L.; Kimura, Z.-i.; Ali, M.; Fujii, T.; Okabe, S. Enrichment and Physiological Characterization of an Anaerobic Ammonium-Oxidizing Bacterium ‘Candidatus Brocadia sapporoensis’. Syst. Appl. Microbiol. 2017, 40, 448–457. [Google Scholar] [CrossRef]
- Lawson, C.E.; Nuijten, G.H.L.; de Graaf, R.M.; Jacobson, T.B.; Pabst, M.; Stevenson, D.M.; Jetten, M.S.M.; Noguera, D.R.; McMahon, K.D.; Amador-Noguez, D.; et al. Autotrophic and Mixotrophic Metabolism of an Anammox Bacterium Revealed by in Vivo 13C and 2H Metabolic Network Mapping. ISME J. 2020, 15, 673–687. [Google Scholar] [CrossRef]
- Strous, M.; Pelletier, E.; Mangenot, S.; Rattei, T.; Lehner, A.; Taylor, M.W.; Horn, M.; Daims, H.; Bartol-Mavel, D.; Wincker, P.; et al. Deciphering the Evolution and Metabolism of an Anammox Bacterium from a Community Genome. Nature 2006, 440, 790–794. [Google Scholar] [CrossRef]
- Tao, Y.; Huang, X.; Gao, D.; Wang, X.; Chen, C.; Liang, H.; van Loosdrecht, M.C.M. NanoSIMS Reveals Unusual Enrichment of Acetate and Propionate by an Anammox Consortium Dominated by Jettenia asiatica. Water Res. 2019, 159, 223–232. [Google Scholar] [CrossRef]
- Kartal, B.; Rattray, J.; van Niftrik, L.A.; van de Vossenberg, J.; Schmid, M.C.; Webb, R.I.; Schouten, S.; Fuerst, J.A.; Damsté, J.S.; Jetten, M.S.M.; et al. Candidatus “Anammoxoglobus propionicus” a New Propionate Oxidizing Species of Anaerobic Ammonium Oxidizing Bacteria. Syst. Appl. Microbiol. 2007, 30, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Okubo, T.; Toyoda, A.; Fukuhara, K.; Uchiyama, I.; Harigaya, Y.; Kuroiwa, M.; Suzuki, T.; Murakami, Y.; Suwa, Y.; Takami, H. The Physiological Potential of Anammox Bacteria as Revealed by Their Core Genome Structure. DNA Res. 2020, 28, dsaa028. [Google Scholar] [CrossRef]
- Norsigian, C.J.; Fang, X.; Palsson, B.O.; Monk, J.M. Pangenome Flux Balance Analysis Toward Panphenomes. In The Pangenome; Tettelin, H., Medini, D., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 219–232. ISBN 978-3-030-38280-3. [Google Scholar]
- Tettelin, H.; Masignani, V.; Cieslewicz, M.J.; Donati, C.; Medini, D.; Ward, N.L.; Angiuoli, S.V.; Crabtree, J.; Jones, A.L.; Durkin, A.S.; et al. Genome Analysis of Multiple Pathogenic Isolates of Streptococcus agalactiae: Implications for the Microbial “Pan-Genome”. Proc. Natl. Acad. Sci. USA 2005, 102, 13950–13955. [Google Scholar] [CrossRef] [PubMed]
- Correia, K.; Mahadevan, R. Pan-Genome-Scale Network Reconstruction: Harnessing Phylogenomics Increases the Quantity and Quality of Metabolic Models. Biotechnol. J. 2020, 15, 1900519. [Google Scholar] [CrossRef]
- van der Star, W.R.L.; Abma, W.R.; Blommers, D.; Mulder, J.W.; Tokutomi, T.; Strous, M.; Picioreanu, C.; van Loosdrecht, M.C.M. Startup of Reactors for Anoxic Ammonium Oxidation: Experiences from the First Full-Scale Anammox Reactor in Rotterdam. Water Res. 2007, 41, 4149–4163. [Google Scholar] [CrossRef]
- Isaka, K.; Date, Y.; Sumino, T.; Yoshie, S.; Tsuneda, S. Growth Characteristic of Anaerobic Ammonium-Oxidizing Bacteria in an Anaerobic Biological Filtrated Reactor. Appl. Microbiol. Biotechnol. 2006, 70, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Okabe, S. Ecological Niche Differentiation among Anammox Bacteria. Water Res. 2020, 171, 115468. [Google Scholar] [CrossRef]
- Okabe, S.; Kamigaito, A.; Kobayashi, K. Maintenance Power Requirements of Anammox Bacteria “Candidatus Brocadia sinica” and “Candidatus Scalindua sp.”. ISME J. 2021, 15, 3566–3575. [Google Scholar] [CrossRef]
- Kato, S.; Goya, E.; Tanaka, M.; Kitagawa, W.; Kikuchi, Y.; Asano, K.; Kamagata, Y. Enrichment and Isolation of Flavobacterium Strains with Tolerance to High Concentrations of Cesium Ion. Sci. Rep. 2016, 6, 20041. [Google Scholar] [CrossRef]
- Lovley, D.R.; Nevin, K.P. Electrobiocommodities: Powering Microbial Production of Fuels and Commodity Chemicals from Carbon Dioxide with Electricity. Curr. Opin. Biotechnol. 2013, 24, 385–390. [Google Scholar] [CrossRef] [PubMed]
- Shaw, D.R.; Ali, M.; Katuri, K.P.; Gralnick, J.A.; Reimann, J.; Mesman, R.; van Niftrik, L.; Jetten, M.S.M.; Saikaly, P.E. Extracellular Electron Transfer-Dependent Anaerobic Oxidation of Ammonium by Anammox Bacteria. Nat. Commun. 2020, 11, 2058. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Park, J.H.; Park, H.D. Effects of an Applied Voltage on Direct Interspecies Electron Transfer via Conductive Materials for Methane Production. Waste Manag. 2017, 68, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Zhao, Z.; Zhang, Y. Towards Engineering Application: Integrating Current Strategies of Promoting Direct Interspecies Electron Transfer to Enhance Anaerobic Digestion. Chem. Eng. J. Adv. 2022, 12, 100405. [Google Scholar] [CrossRef]
- Reed, J.L.; Vo, T.D.; Schilling, C.H.; Palsson, B.O. An Expanded Genome-Scale Model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biol. 2003, 4, R54. [Google Scholar] [CrossRef] [PubMed]
- Sayers, E.W.; Bolton, E.E.; Brister, J.R.; Canese, K.; Chan, J.; Comeau, D.C.; Connor, R.; Funk, K.; Kelly, C.; Kim, S.; et al. Database Resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2022, 50, D20–D26. [Google Scholar] [CrossRef] [PubMed]
- Krzywinski, M.; Schein, J.; Birol, I.; Connors, J.; Gascoyne, R.; Horsman, D.; Jones, S.J.; Marra, M.A. Circos: An Information Aesthetic for Comparative Genomics. Genome Res. 2009, 19, 1639–1645. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Wessels, H.J.C.T.; van Alen, T.; Jetten, M.S.M.; Kartal, B. Nitric Oxide-Dependent Anaerobic Ammonium Oxidation. Nat. Commun. 2019, 10, 1244. [Google Scholar] [CrossRef]
- Song, G.D.; Liu, S.M.; Marchant, H.; Kuypers, M.M.M.; Lavik, G. Anammox, Denitrification and Dissimilatory Nitrate Reduction to Ammonium in the East China Sea Sediment. Biogeosciences 2013, 10, 6851–6864. [Google Scholar] [CrossRef]
- Ganesan, S.; Vadivelu, V.M. Effect of External Hydrazine Addition on Anammox Reactor Start-up Time. Chemosphere 2019, 223, 668–674. [Google Scholar] [CrossRef]
- Zhang, D.; Cui, L.; Wang, H.; Liang, J. Study of Sulfate-Reducing Ammonium Oxidation Process and Its Microbial Community Composition. Water Sci. Technol. 2019, 79, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Oshiki, M.; Ali, M.; Shinyako-Hata, K.; Satoh, H.; Okabe, S. Hydroxylamine-Dependent Anaerobic Ammonium Oxidation (Anammox) by “Candidatus Brocadia sinica”. Environ. Microbiol. 2016, 18, 3133–3143. [Google Scholar] [CrossRef] [PubMed]
- Heirendt, L.; Arreckx, S.; Pfau, T.; Mendoza, S.N.; Richelle, A.; Heinken, A.; Haraldsdóttir, H.S.; Wachowiak, J.; Keating, S.M.; Vlasov, V.; et al. Creation and Analysis of Biochemical Constraint-Based Models Using the COBRA Toolbox v.3.0. Nat. Protoc. 2019, 14, 639–702. [Google Scholar] [CrossRef] [PubMed]
- Van Teeseling, M.C.F.; Neumann, S.; Van Niftrik, L. The Anammoxosome Organelle Is Crucial for the Energy Metabolism of Anaerobic Ammonium Oxidizing Bacteria. J. Mol. Microbiol. Biotechnol. 2013, 23, 104–117. [Google Scholar] [CrossRef] [PubMed]
- Kartal, B.; Tan, N.C.G.; Van De Biezen, E.; Kampschreur, M.J.; Van Loosdrecht, M.C.M.; Jetten, M.S.M. Effect of Nitric Oxide on Anammox Bacteria. Appl. Environ. Microbiol. 2010, 76, 6304–6306. [Google Scholar] [CrossRef]
- Rasko, D.A.; Rosovitz, M.J.; Myers, G.S.A.; Mongodin, E.F.; Fricke, W.F.; Gajer, P.; Crabtree, J.; Sebaihia, M.; Thomson, N.R.; Chaudhuri, R.; et al. The Pangenome Structure of Escherichia coli: Comparative Genomic Analysis of E. coli Commensal and Pathogenic Isolates. J. Bacteriol. 2008, 190, 6881–6893. [Google Scholar] [CrossRef] [PubMed]
- Akram, M.; Bock, J.; Dietl, A.; Barends, T.R.M. Specificity of Small C-Type Cytochromes in Anaerobic Ammonium Oxidation. ACS Omega 2021, 6, 21457–21464. [Google Scholar] [CrossRef]
- Kartal, B.; Keltjens, J.T. Anammox Biochemistry: A Tale of Heme c Proteins. Trends Biochem. Sci. 2016, 41, 998–1011. [Google Scholar] [CrossRef]
- Pandit, S.; Shanbhag, S.; Mauter, M.; Oren, Y.; Herzberg, M. Influence of Electric Fields on Biofouling of Carbonaceous Electrodes. Environ. Sci. Technol. 2017, 51, 10022–10030. [Google Scholar] [CrossRef]
- Osset-Álvarez, M.; Pous, N.; Chiluiza-Ramos, P.; Bañeras, L.; Balaguer, M.D.; Puig, S. Unveiling Microbial Electricity Driven Anoxic Ammonium Removal. Bioresour. Technol. Rep. 2022, 17, 100975–100985. [Google Scholar] [CrossRef]
- Parks, D.H.; Imelfort, M.; Skennerton, C.T.; Hugenholtz, P.; Tyson, G.W. CheckM: Assessing the Quality of Microbial Genomes Recovered from Isolates, Single Cells, and Metagenomes. Genome Res. 2015, 25, 1043–1055. [Google Scholar] [CrossRef]
- Arkin, A.P.; Cottingham, R.W.; Henry, C.S.; Harris, N.L.; Stevens, R.L.; Maslov, S.; Dehal, P.; Ware, D.; Perez, F.; Canon, S.; et al. KBase: The United States Department of Energy Systems Biology Knowledgebase. Nat. Biotechnol. 2018, 36, 566–569. [Google Scholar] [CrossRef] [PubMed]
- Amos, B.; Aurrecoechea, C.; Barba, M.; Barreto, A.; Basenko, E.Y.; Bażant, W.; Belnap, R.; Blevins, A.S.; Böhme, U.; Brestelli, J.; et al. VEuPathDB: The Eukaryotic Pathogen, Vector and Host Bioinformatics Resource Center. Nucleic Acids Res. 2022, 50, D898–D911. [Google Scholar] [CrossRef] [PubMed]
- Strous, M.; Kuenen, J.G.; Jetten, M.S.M. Key Physiology of Anaerobic Ammonium Oxidation. Appl. Environ. Microbiol. 1999, 65, 3248–3250. [Google Scholar] [CrossRef] [PubMed]
- Neumann, S.; Wessels, H.J.C.T.; Rijpstra, W.I.C.; Sinninghe Damsté, J.S.; Kartal, B.; Jetten, M.S.M.; van Niftrik, L. Isolation and Characterization of a Prokaryotic Cell Organelle from the Anammox Bacterium Kuenenia stuttgartiensis. Mol. Microbiol. 2014, 94, 794–802. [Google Scholar] [CrossRef]
- Van Teeseling, M.C.F.; Mesman, R.J.; Kuru, E.; Espaillat, A.; Cava, F.; Brun, Y.V.; Vannieuwenhze, M.S.; Kartal, B.; Van Niftrik, L. Anammox Planctomycetes Have a Peptidoglycan Cell Wall. Nat. Commun. 2015, 6, 6878. [Google Scholar] [CrossRef] [PubMed]
- Thiele, I.; Palsson, B. A Protocol for Generating a High-Quality Genome-Scale Metabolic Reconstruction. Nat. Protoc. 2010, 5, 93–121. [Google Scholar] [CrossRef] [PubMed]
- Brettin, T.; Davis, J.J.; Disz, T.; Edwards, R.A.; Gerdes, S.; Olsen, G.J.; Olson, R.; Overbeek, R.; Parrello, B.; Pusch, G.D.; et al. RASTtk: A Modular and Extensible Implementation of the RAST Algorithm for Building Custom Annotation Pipelines and Annotating Batches of Genomes. Sci. Rep. 2015, 5, 8365. [Google Scholar] [CrossRef]
- Henry, C.S.; Dejongh, M.; Best, A.A.; Frybarger, P.M.; Linsay, B.; Stevens, R.L. High-Throughput Generation, Optimization and Analysis of Genome-Scale Metabolic Models. Nat. Biotechnol. 2010, 28, 977–982. [Google Scholar] [CrossRef]
- Thiele, I.; Vlassis, N.; Fleming, R.M.T. FASTGAPFILL: Efficient Gap Filling in Metabolic Networks. Bioinformatics 2014, 30, 2529–2531. [Google Scholar] [CrossRef]
- Lieven, C.; Beber, M.E.; Olivier, B.G.; Bergmann, F.T.; Ataman, M.; Babaei, P.; Bartell, J.A.; Blank, L.M.; Chauhan, S.; Correia, K.; et al. MEMOTE for Standardized Genome-Scale Metabolic Model Testing. Nat. Biotechnol. 2020, 38, 272–276. [Google Scholar] [CrossRef] [PubMed]
Genbank ID | Species Name | Notes on NCBI |
---|---|---|
GCA_002009475.1 | Ca. Brocadia caroliensis | Derived from metagenome |
GCA_000987375.1 | Ca. Brocadia fulgida | Derived from metagenome |
GCA_017347445.1 | Ca. Brocadia pituitae | Derived from environmental source |
GCF_001753675.2 | Ca. Brocadia sapporiensis | Included in RefSeq |
GCA_000949635.1 | Ca. Brocadia sinica | Included in RefSeq |
GCF_000296795.1 | Ca. Jettenia caeni | Missing strain identifier |
GCA_005524015.1 | Ca. Jettenia ecosi | Derived from metagenome |
GCF_900232105.1 | Ca. Kuenenia stuttgartiensis | Included in RefSeq |
GCA_000786775.1 | Ca. Scalindua brodae | Derived from metagenome |
GCF_002443295.1 | Ca. Scalindua japonica | Included in RefSeq |
GCA_002632345.1 | Ca. Scalindua rubra | Derived from metagenome |
GCA_017368835.1 | Ca. Scalindua sediminis | Derived from metagenome |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bielski, R.G.; Islam, M.A. Pangenome-Scale Mathematical Modelling of ANAMMOX Bacteria Metabolism. SynBio 2024, 2, 70-84. https://doi.org/10.3390/synbio2010005
Bielski RG, Islam MA. Pangenome-Scale Mathematical Modelling of ANAMMOX Bacteria Metabolism. SynBio. 2024; 2(1):70-84. https://doi.org/10.3390/synbio2010005
Chicago/Turabian StyleBielski, Roman G., and M. Ahsanul Islam. 2024. "Pangenome-Scale Mathematical Modelling of ANAMMOX Bacteria Metabolism" SynBio 2, no. 1: 70-84. https://doi.org/10.3390/synbio2010005
APA StyleBielski, R. G., & Islam, M. A. (2024). Pangenome-Scale Mathematical Modelling of ANAMMOX Bacteria Metabolism. SynBio, 2(1), 70-84. https://doi.org/10.3390/synbio2010005