Effect of Microscopic Properties on Flow Behavior of Industrial Cohesive Powder
Abstract
:1. Introduction
2. Materials Description and Characterization
3. Experimental Setup
3.1. Schulze Ring Shear Tester—RST-XS.s and RST-01
3.2. Anton Paar Shear Tester
3.3. Test Procedure
4. Results
5. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, N.; Luding, S. Memory of jamming–multiscale models for soft and granular matter. Granul. Matter. 2016, 18, 58. [Google Scholar] [CrossRef]
- Luding, S. So much for the jamming point. Nat. Phys. 2016, 12, 531–532. [Google Scholar] [CrossRef]
- Andrea, J.L.; Sidney, R.N. Nonlinear dynamics: Jamming is not just cool any more. Nature 1998, 396, 21–22. [Google Scholar] [CrossRef]
- Bi, D.; Zhang, J.; Chakraborty, B.; Behringer, R.P. Jamming by shear. Nature 2011, 480, 355–358. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Fei, W.; Yu, H.S.; Ooi, J.; Rotter, M. Experimental study of anisotropy and non-coaxiality of granular solids. Granul. Matter. 2015, 17, 189–196. [Google Scholar] [CrossRef]
- Van Hecke, M. Jamming of soft particles: Geometry, mechanics, scaling and isostaticity. J. Phys. Condens. Matter. 2010, 22, 033101. [Google Scholar] [CrossRef]
- Cates, M.E.; Haw, M.D.; Holmes, C.B. Dilatancy, jamming, and the physics of granulation. J. Phys. Condens. Matter. 2005, 17, S2517–S2531. [Google Scholar] [CrossRef]
- Alshibli, K.A.; Sture, S. Shear Band Formation in Plane Strain Experiments of Sand. J. Geotech. Geoenviron. Eng. 2000, 126, 495–503. [Google Scholar] [CrossRef]
- Singh, A.; Magnanimo, V.; Saitoh, K.; Luding, S. Effect of cohesion on shear banding in quasistatic granular materials. Phys. Rev. E—Stat. Nonlinear Soft Matter. Phys. 2014, 90, 022202. [Google Scholar] [CrossRef]
- Thakur, S.C.; Ahmadian, H.; Sun, J.; Ooi, J.Y. An experimental and numerical study of packing, compression, and caking behaviour of detergent powders. Particuology 2014, 12, 2–12. [Google Scholar] [CrossRef]
- Radjai, F.; Jean, M.; Moreau, J.J.; Roux, S. Force distributions in dense two-dimensional granular systems. In Jamming and Rheology; CRC Press: Boca Raton, FL, USA, 2020; pp. 126–129. [Google Scholar] [CrossRef]
- Majmudar, T.S.; Behringer, R.P. Contact force measurements and stress-induced anisotropy in granular materials. Nature 2005, 435, 1079–1082. [Google Scholar] [CrossRef] [PubMed]
- Luding, S. Cohesive, frictional powders: Contact models for tension. Granul. Matter. 2008, 10, 235–246. [Google Scholar] [CrossRef]
- Luding, S. Shear flow modeling of cohesive and frictional fine powder. Powder Technol. 2005, 158, 45–50. [Google Scholar] [CrossRef]
- Luding, S. Anisotropy in cohesive, frictional granular media. J. Phys. Condens. Matter. 2005, 17, S2623–S2640. [Google Scholar] [CrossRef]
- Alonso-Marroquín, F.; Herrmann, H.J. Ratcheting of Granular Materials. Phys. Rev. Lett. 2004, 92, 543011–543014. [Google Scholar] [CrossRef]
- Tomas, J. Product design of cohesive powders—Mechanical properties, compression and flow behavior. Chem. Eng. Technol. 2004, 27, 605–618. [Google Scholar] [CrossRef]
- Midi, G.D.R. On dense granular flows. Eur. Phys. J. E 2008, 14, 341–365. [Google Scholar] [CrossRef]
- Wolf, B.; Scirocco, R.; Frith, W.J.; Norton, I.T. Shear-induced anisotropic microstructure in phase-separated biopolymer mixtures. Food Hydrocoll. 2000, 14, 217–225. [Google Scholar] [CrossRef]
- Radjai, F.; Roux, S.; Moreau, J.J. Contact forces in a granular packing. Chaos 1999, 9, 544–550. [Google Scholar] [CrossRef] [PubMed]
- Cundall, P.A. Numerical experiments on localization in frictional materials. Ingenieur-Archiv 1989, 59, 148–159. [Google Scholar] [CrossRef]
- Savage, S.B.; Hutter, K. The motion of a finite mass of granular material down a rough incline. J. Fluid Mech. 1989, 199, 177–215. [Google Scholar] [CrossRef]
- Schwedes, J. Review on testers for measuring flow properties of bulk solids. Granul. Matter. 2003, 5, 1–43. [Google Scholar] [CrossRef]
- Jenike, A.W. Quantitative design of mass-flow bins. Powder Technol. 1967, 1, 237–244. [Google Scholar] [CrossRef]
- Schwedes, J. Measurement of flow properties of bulk solids. Powder Technol. 1996, 88, 285–290. [Google Scholar] [CrossRef]
- Schulze, D. Time- and velocity-dependent properties of powders effecting slip-stick oscillations. Chem. Eng. Technol. 2003, 26, 1047–1051. [Google Scholar] [CrossRef]
- Russell, A.; Müller, P.; Shi, H.; Tomas, J. Influences of loading rate and preloading on the mechanical properties of dry elasto-plastic granules under compression. AIChE J. 2014, 60, 4037–4050. [Google Scholar] [CrossRef]
- Imole, O.I.; Paulick, M.; Magnanimo, V.; Morgeneyer, M.; Montes, B.E.C.; Ramaioli, M.; Kwade, A.; Luding, S. Slow stress relaxation behavior of cohesive powders. Powder Technol. 2016, 293, 82–93. [Google Scholar] [CrossRef]
- Morgeneyer, M.; Brendel, L.; Farkas, Z.; Kadau, D.; Wolf, D.E.; Schwedes, J. Can one make a powder forget its history? In Proceedings of the 4th International Conference on Conveying and Handling of Particulate Solids, Budapest, Hungary, 27–30 May 2003; pp. 12118–12124. [Google Scholar]
- Morgeneyer, M.; Schwedes, J. Investigation of powder properties using alternating strain paths. Task Q. 2003, 7, 571–578. [Google Scholar]
- Feise, H.; Schwedes, J. Investigation of the Behaviour of Cohesive Powder in the Biaxial Tester. KONA Powder Part. J. 1995, 13, 99–103. [Google Scholar] [CrossRef]
- Schulze, D. Round robin test on ring shear testers. Adv. Powder Technol. 2011, 22, 197–202. [Google Scholar] [CrossRef]
- Kamath, S.; Puri, V.M.; Manbeck, H.B.; Hogg, R. Flow properties of powders using four testers—Measurement, comparison and assessment. Powder Technol. 1993, 76, 277–289. [Google Scholar] [CrossRef]
- Kamath, S.; Puri, V.M.; Manbeck, H.B. Flow property measurement using the Jenike cell for wheat flour at various moisture contents and consolidation times. Powder Technol. 1994, 81, 293–297. [Google Scholar] [CrossRef]
- Freeman, R. Measuring the flow properties of consolidated, conditioned and aerated powders—A comparative study using a powder rheometer and a rotational shear cell. Powder Technol. 2007, 174, 25–33. [Google Scholar] [CrossRef]
- Berry, R.J.; Bradley, M.S.A.; McGregor, R.G. Brookfield powder flow tester—Results of round robin tests with CRM-116 limestone powder. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2015, 229, 215–230. [Google Scholar] [CrossRef]
- Koynov, S.; Glasser, B.; Muzzio, F. Comparison of three rotational shear cell testers: Powder flowability and bulk density. Powder Technol. 2015, 283, 103–112. [Google Scholar] [CrossRef]
- Akers, R.J. The Certification of a Limestone Powder for Jenike Shear Testing: CRM 116: Final Report; Publication Office: Luxembourg, 1992; p. 149. [Google Scholar]
- Salehi, H.; Sofia, D.; Schütz, D.; Barletta, D.; Poletto, M. Experiments and simulation of torque in Anton Paar powder cell. Part. Sci. Technol. 2018, 36, 501–512. [Google Scholar] [CrossRef]
- Teunou, E.; Fitzpatrick, J.J.; Synnott, E.C. Characterization of food powder flowability. J. Food Eng. 1999, 39, 31–37. [Google Scholar] [CrossRef]
- Fitzpatrick, J.J.; Barringer, S.A.; Iqbal, T. Flow property measurement of food powders and sensitivity of Jenike’s hopper design methodology to the measured values. J. Food Eng. 2004, 61, 399–405. [Google Scholar] [CrossRef]
- Liu, N.; Chen, P. A failure envelope proposal based on the analysis of the requirements of nonlinear Mohr-Coulomb criteria. Mech. Res. Commun. 2023, 129, 104086. [Google Scholar] [CrossRef]
- Barsanescu, P.; Sandovici, A.; Serban, A. Mohr-Coulomb criterion with circular failure envelope, extended to materials with strength-differential effect. Mater. Des. 2018, 148, 49–70. [Google Scholar] [CrossRef]
- Ghimire, A.; Noor-E-Khuda, S.; Ullah, S.N.; Suntharavadivel, T. Determination of Mohr–Coulomb failure envelope, mechanical properties and UPV of commercial cement-lime mortar. Mater. Struct. Constr. 2022, 55, 111. [Google Scholar] [CrossRef]
- Schulze, D. Flow properties of powders and bulk solids (fundamentals). Powder Technol. 2010, 65, 321–333. [Google Scholar]
- Kwade, A.; Schulze, D.; Schwedes, J. Determination of the stress ratio in uniaxial compression tests. Powder Handl. Process. 1994, 6, 61–65. [Google Scholar]
- Schulze, D.; Schwedes, J.; Carson, J.W. Powders and Bulk Solids: Behavior, Characterization, Storage and Flow; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar] [CrossRef]
- Schulze, D. Beispiele gemessener Fließeigenschaften; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manokaran, M.; Morgeneyer, M.; Weis, D. Effect of Microscopic Properties on Flow Behavior of Industrial Cohesive Powder. Powders 2024, 3, 324-337. https://doi.org/10.3390/powders3030019
Manokaran M, Morgeneyer M, Weis D. Effect of Microscopic Properties on Flow Behavior of Industrial Cohesive Powder. Powders. 2024; 3(3):324-337. https://doi.org/10.3390/powders3030019
Chicago/Turabian StyleManokaran, Maheandar, Martin Morgeneyer, and Dominik Weis. 2024. "Effect of Microscopic Properties on Flow Behavior of Industrial Cohesive Powder" Powders 3, no. 3: 324-337. https://doi.org/10.3390/powders3030019
APA StyleManokaran, M., Morgeneyer, M., & Weis, D. (2024). Effect of Microscopic Properties on Flow Behavior of Industrial Cohesive Powder. Powders, 3(3), 324-337. https://doi.org/10.3390/powders3030019