Orthorhombic Crystal Structure of Grossular Garnet (Suva Česma, Western Serbia): Evidence from the Rietveld Refinement
Abstract
:1. Introduction
- We believe that the weak garnet anisotropy could indicate the presence of disymmetrization; there are five possible causes of this, discussed in [4,5,6]. In summary, it is agreed that the that grossular-andradite garnet group could exhibit non-cubic symmetry in various space groups (hereinafter, s.g.’s), such as: I‾1 [9,10,11,12,13,14]; Fddd [9,12,15,16]; Fddd or C2/c [17]; R‾3c or Fddd [5]; and R‾3c [6]. More recently, it was shown that these minerals could have a tetragonal symmetry (most likely I41/a s.g.), as well [18].
2. Materials and Methods
2.1. SEM-EDS Method
2.2. XRPD Method
3. Results and Discussion
3.1. SEM-EDS Study
3.2. Crystal Structure Refinements
- (i)
- Taking into the account the mean {X} (i.e., Ca2+ and Mn2+), and [Y] cation contents (i.e., Al3+, Fe3+ and Ti4+) from the SEM-EDS analyses (Table 1) and using the data given by [27], the average cation sizes in {X} and [Y] positions were calculated to be <r{x}> = 1.119 Å and <r[y]> = 0.544 Å, respectively. The position of the grossular studied in this paper (SČ; Figure 4), clearly indicates a possibility of the T2g irreducible representation, i.e., the phase transition from the cubic Ia‾3d s.g., to the non-cubic R‾3c, Fddd, C2/c and I‾1 s.g.’s [28];
- (ii)
- The calculated rhombohedral distortion angles (α) depart significantly (i.e., by more than 0.004°) from 60° (i.e., 0.036o in the R‾3c s.g. and from 0.036° to 0.044° in the R‾3 s.g.; Tables S2 and S5), which clearly reveals the violation of the cubic symmetry [29]. Furthermore, β0 angles were determined to be 90.45(2)° in the triclinic I‾1 s.g. (Tables S2 and S5), allowing us to decisively conclude that the studied grandite is not cubic, and to assume that, actually, a structural disymmetrization occurred;
- (iii)
- Because there were no significant differences between Al sof’s and their corresponding Y–O distances over the octahedral Y sites (Table S3), the R‾3 (required conditions are four different sof’s and Y–O distances), C2/c (required conditions are four different sof’s and Y–O distances) and I‾1 (required conditions are eight different sof’s and Y–O distances) s.g.’s should also be definitively excluded as viable possibilities. Therefore, only the I41/a, R‾3c and Fddd s.g.’s remained as plausible possibilities;
- (iv)
- Among the later three remained solutions, the Fddd s.g. shows a greatest different sof’s of ΔAl = 22(11) %, whereas I41/a and R‾3c s.g.’s show sof’s that are equal to their esd’s (ΔAl = 1(1) % and ΔAl = 12(12) %, respectively). On the other hand, the resulting ΔY‘s for the I41/a, R‾3c, and Fddd s.g.’s are 0.06(3) Å, 0.12(2) Å and 0.08(7) Å, respectively (Table S3). Furthermore, there is a somewhat different situation with the applied constraints (Table S6). Namely, I41/a, R‾3c, and Fddd s.g.’s show ΔAl’s of 4(6) %, 22(3) %, and 14(13) %, respectively; and ΔY‘s of 0.054(6) Å, 0.060(6) Å, and 0.075(6) Å, respectively. According to the aforementioned resulting data, there is still a considerable lack of sufficiently clear evidence and reliability of the parameters for the true space group of crystallization within these three possible solutions;
- (v)
- For the Fddd, C2/c, and I‾1 s.g.’s, all of the three crystallographic unit cell parameters are more or less different relative to each other, which is a required condition for these space groups (Tables S2 and S5). This fact allows us to finally exclude the I41/a and R‾3c s.g.’s as options, as well, because for the aforementioned space groups, the required conditions are that the a0 and b0 axes must be equal and different from the c0 axis.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baranin, D. Basic Geological Map of Serbia, sheet Valjevo 4, scale 1:50,000. Geol. Surv. Serb. 2009, unpublished. [Google Scholar]
- Dušanić, S.; Tančić, P.; Popović, D. First occurrence of rodingite in Central Serbia. In Proceedings of the XIX Congress of the Carpathian-Balkan Geological Association, Thessaloniki, Greece, 23–26th September 2010; Volume 39, p. 106. Available online: https://www.geologica-balcanica.eu/journal/39/1-2/p-106 (accessed on 3 May 2023.).
- Warr, L.N. IMA–CNMNC approved mineral symbols. Min. Mag. 2021, 85, 291–320. [Google Scholar] [CrossRef]
- Tančić, P.; Vulić, P.; Kaindl, R.; Sartory, B.; Dimitrijević, R. Macroscopically-zoned grandite from the garnetite skarn of Meka Presedla (Kopaonik Mountain, Serbia). Acta Geol. Sin. 2012, 86, 393–406. [Google Scholar] [CrossRef]
- Tančić, P.; Kremenović, A.; Vulić, P. Structural dissymmetrization of optically anisotropic Grs64±1Adr36±1Sps2 grandite from Meka Presedla (Kopaonik Mt., Serbia). Powd. Diffr. 2020, 35, 7–16. [Google Scholar] [CrossRef]
- Tančić, P.; Kremenović, A. Rietveld crystal structure refinement of a natural rhombohedral grossular-andradite garnet from Serbia. Geol. Q. 2022, 66, 1639. [Google Scholar] [CrossRef]
- Srećković-Batočanin, D.; Vasković, N.; Milutinović, S.; Ilić, V.; Nikić, Z. Composition of zonal garnets from the garnetite exo-skarn of the ore field Rogozna (Rogozna Mts, southern Serbia). In Proceedings of the XVI Serbian Geological Congress, Donji Milanovac, Serbia, 22–25th May 2014; pp. 265–268. [Google Scholar]
- Kostić, B.; Srećković-Batočanin, D.; Filipov, P.; Tančić, P.; Sokol, K. Anisotropic grossular-andradite garnets: Evidence of two stage skarn evolution from Rudnik, Central Serbia. Geol. Carp. 2021, 73, 17–25. [Google Scholar] [CrossRef]
- Takéuchi, Y.; Haga, N.; Umizu, S.; Sato, G. The derivative structure of silicate garnets in grandite. Z. Krist. 1982, 158, 53–99. [Google Scholar] [CrossRef]
- Allen, F.M.; Buseck, P.R. XRD, FTIR and TEM studies of optically anisotropic grossular garnets. Am. Miner. 1988, 73, 568–584. [Google Scholar]
- Kingma, K.J.; Downs, J.W. Crystal-structure analysis of a birefringent andradite. Am. Miner. 1989, 74, 1307–1316. [Google Scholar]
- Frank-Kamenetskaya, O.V.; Rozhdestvenskaya, I.V.; Shtukenberg, A.G.; Bannova, I.I.; Skalkina, Y.A. Dissymmetrization of crystal structures of grossular–andradite garnets Ca3(Al, Fe)2(SiO4)3. Struct. Chem. 2007, 18, 493–500. [Google Scholar] [CrossRef]
- Kobayashi, S.; Miyawaki, R.; Momma, K.; Fujisawa, A.; Kaneda, H. Anisotropic garnet from the Yamansu ore deposit, Xinjiang, China. J. Miner. Petrol. Sci. 2013, 108, 245–254. [Google Scholar] [CrossRef]
- Nakamura, Y.; Kuribayashi, T.; Nagase, T. Cation ordering of {110} and {211} sectors in grandite from Mali. J. Miner. Petrol. Sci. 2016, 108, 245–254. [Google Scholar] [CrossRef]
- Gali, S. Reduction of symmetry in grandite solid solution. Acta Geol. Hisp. 1984, 19, 287–293. [Google Scholar]
- Badar, M.A.; Hussain, S.; Niaz, S.; ur Rehman, S. Anomalous optical variations in the grossular garnet from the Eden Mills, Belvidere Mountain (Vermont, USA). Arab J. Geosci. 2016, 9, 545. [Google Scholar] [CrossRef]
- Hirai, H.; Nakazawa, H. Visualizing low symmetry of a grandite garnet on precession photographs. Am. Miner. 1986, 71, 1210–1213. [Google Scholar]
- Panikorovskii, T.L.; Galuskina, I.O.; Bocharov, V.N.; Shilovskikh, V.V.; Galuskin, E.V. Merohedral Mechanism Twining Growth of Natural Cation-Ordered Tetragonal Grossular. Crystals 2022, 12, 1638. [Google Scholar] [CrossRef]
- Novak, G.A.; Gibbs, G.V. The crystal chemistry of the silicate garnets. Am. Miner. 1971, 56, 791–825. [Google Scholar]
- Droop, G.T.R. A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Min. Mag. 1987, 51, 431–435. [Google Scholar] [CrossRef]
- Rodriguez-Carvajal, J. Program Fullprof (Computer software). In Proceedings of the Abstract of 15th Conference of International Union of Crystallography, Satellite Meeting on Powder Diffraction, Toulouse, France, 16–19 July 1990; p. 127. [Google Scholar]
- Grew, E.S.; Locock, A.J.; Mills, S.J.; Galuskina, I.O.; Galuskin, E.V.; Hålenius, U. IMA Report, Nomenclature of the garnet supergroup. Am. Miner. 2013, 98, 785–811. [Google Scholar] [CrossRef]
- Zanazzi, P.F.; Montagnoli, M.; Nazzareni, S.; Comodi, P. Structural effects of pressure on triclinic chlorite: A single-crystal study. Am. Miner. 2006, 91, 1871–1878. [Google Scholar] [CrossRef]
- Tančić, P.; Dimitrijević, R.; Poznanović, M.; Pačevski, A.; Sudar, S. Crystal structure and chemical composition of ludwigite from Vranovac ore deposit (Boranja Mountain, Serbia). Acta Geol. Sin. 2012, 86, 1524–1538. [Google Scholar] [CrossRef]
- Cvetković, Ž.; Tančić, P. Mineralogical and crystallographic characteristics of bauxites from some Grebnik’s (Metohija, Serbia) ore deposits. Geol. Anal. Balk. Poluostrva 2019, 80, 45–61. [Google Scholar] [CrossRef]
- Berar, J.F.; Lelann, P. ESD’s and estimated probable error obtained in Rietveld refinements with local correlations. J. Appl. Crystallogr. 1991, 24, 1–5. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Cryst. 1976, A32, 751–767. [Google Scholar] [CrossRef]
- Griffen, D.T.; Hatch, D.M.; Phillips, W.R.; Kulaksiz, S. Crystal chemistry and symmetry of a birefringent tetragonal pyralspite75-grandite25 garnet. Am. Miner. 1992, 77, 399–406. [Google Scholar]
- Ishizawa, N.; Inagaki, Y. A Guide to Discriminating the Rhombohedral Cell from the Face-Centred Pseudo Cubic Cell, Ceramics Research Center. Annu. Rep. 2008, 8, 35–49. [Google Scholar]
- Wildner, M.; Andrut, M. The crystal chemistry of birefringent natural uvarovites: Part II. Single-crystal X-ray structures. Am. Miner. 2001, 86, 1231–1251. [Google Scholar] [CrossRef]
- Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- Resende, J.A.L.C.; Fernandes, N.G. X-ray powder refinement of a natural garnet from Diamantina, Minas Gerais, Brazil. Acta Cryst. 2005, E61, 265–267. [Google Scholar] [CrossRef]
- Shtukenberg, A.G.; Popov, D.Y.; Punin, Y.O. Growth ordering and anomalous birefringence in ugrandite garnets. Min. Mag. 2005, 69, 537–550. [Google Scholar] [CrossRef]
wt. % | 1 | 2 | 3 | 4 | 5 | Average |
---|---|---|---|---|---|---|
SiO2 | 39.53 | 39.06 | 39.11 | 39.10 | 39.60 | 39.28 |
TiO2 | 0.00 | 0.76 | 0.89 | 0.00 | 0.00 | 0.33 |
Al2O3 | 20.64 | 21.16 | 20.82 | 19.87 | 20.74 | 20.65 |
Cr2O3 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
FeO | 2.26 | 1.89 | 1.97 | 3.62 | 2.17 | 2.38 |
MnO | 0.00 | 0.36 | 0.50 | 0.00 | 0.00 | 0.17 |
MgO | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
CaO | 37.47 | 36.66 | 36.62 | 37.24 | 37.13 | 37.02 |
Total | 99.90 | 99.89 | 99.91 | 99.83 | 99.64 | 99.83 |
apfu | 1 | 2 | 3 | 4 | 5 | average |
Si | 2.986 | 2.955 | 2.962 | 2.966 | 2.999 | 2.974 |
AlIV | 0.014 | 0.045 | 0.038 | 0.034 | 0.001 | 0.026 |
(Z) | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 |
AlVI | 1.824 | 1.842 | 1.821 | 1.743 | 1.850 | 1.816 |
Fe3+ | 0.143 | 0.116 | 0.116 | 0.230 | 0.137 | 0.148 |
Ti | 0.000 | 0.043 | 0.051 | 0.000 | 0.000 | 0.019 |
[Y] | 1.967 | 2.001 | 1.987 | 1.973 | 1.987 | 1.983 |
Mg | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Fe2+ | 0.000 | 0.004 | 0.009 | 0.000 | 0.000 | 0.003 |
Mn | 0.000 | 0.023 | 0.032 | 0.000 | 0.000 | 0.011 |
Ca | 3.033 | 2.972 | 2.972 | 3.027 | 3.013 | 3.003 |
{X} | 3.033 | 2.999 | 3.013 | 3.027 | 3.013 | 3.017 |
wt. % * | 1 | 2 | 3 | 4 | 5 | average |
Fe2O3 | 2.51 | 2.04 | 2.03 | 4.02 | 2.41 | 2.60 |
FeO | 0.00 | 0.06 | 0.14 | 0.00 | 0.00 | 0.04 |
mol. % | 1 | 2 | 3 | 4 | 5 | average |
Prp | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Alm | 0.0 | 0.1 | 0.3 | 0.0 | 0.0 | 0.1 |
Grs | 92.7 | 91.2 | 90.3 | 88.4 | 93.1 | 91.1 |
Adr | 7.3 | 8.0 | 8.4 | 11.6 | 6.9 | 8.4 |
Uv | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Sps | 0.0 | 0.8 | 1.1 | 0.0 | 0.0 | 0.4 |
Space Group | Ia‾3d | R‾3c | Fddd | C2/c | I‾1 | R‾3 | I41/a |
---|---|---|---|---|---|---|---|
N−P+C | 6388 | 6372 | 6363 | 6351 | 6365 | 6351 | 6364 |
Rp | 16.2 | 16.2 | 16.3 | 14.8 | 18.7 | 16.1 | 16.0 |
Rwp | 23.2 | 23.1 | 23.0 | 19.9 | 24.5 | 23.0 | 22.8 |
Rexp | 8.14 | 8.11 | 8.11 | 8.10 | 8.11 | 8.10 | 8.11 |
Conventional Rp | 14.9 | 13.8 | 14.2 | 20.2 | 25.1 | 14.2 | 14.0 |
Conventional Rwp | 17.8 | 16.0 | 16.5 | 24.6 | 30.4 | 16.9 | 16.4 |
Conventional Rexp | 6.24 | 5.64 | 5.82 | 10.02 | 10.08 | 5.97 | 5.84 |
Chi2 | 8.14 | 8.11 | 8.06 | 6.04 | 9.11 | 8.04 | 7.88 |
Chi2 (Bragg contr.) | 8.83 | 8.68 | 8.50 | 6.20 | 9.41 | 8.46 | 8.32 |
DW-stat. | 0.5154 | 0.5199 | 0.5239 | 0.6351 | 0.4193 | 0.5264 | 0.5430 |
DW-exp. | 1.9744 | 1.9795 | 1.9824 | 1.9863 | 1.9818 | 1.9863 | 1.9821 |
GoF | 2.8 | 2.8 | 2.8 | 2.4 | 3.0 | 2.8 | 2.8 |
Grossular RB | 5.63 | 5.01 | 5.29 | 8.13 | 13.7 | 5.08 | 4.90 |
Grossular RF | 1.93 | 1.65 | 1.75 | 3.87 | 7.65 | 1.68 | 1.65 |
Chlorite RB | 6.14 | 5.27 | 5.71 | 9.59 | 18.3 | 6.00 | 5.59 |
Chlorite RF | 1.95 | 1.56 | 1.68 | 4.23 | 6.97 | 1.79 | 1.61 |
Average RB | 5.72 | 5.06 | 5.37 | 8.39 | 14.91 | 5.22 | 5.01 |
Average RF | 1.94 | 1.64 | 1.74 | 3.93 | 7.47 | 1.70 | 1.64 |
Space Group | Ia‾3d | R‾3c | Fddd | C2/c | I‾1 | R‾3 | I41/a |
---|---|---|---|---|---|---|---|
N−P+C | 6389 | 6373 | 6364 | 6351 | 6369 | 6353 | 6365 |
Rp | 16.7 | 16.4 | 16.5 | 16.3 | 19.5 | 16.6 | 16.2 |
Rwp | 23.5 | 23.3 | 23.4 | 22.7 | 25.8 | 23.5 | 23.2 |
Rexp | 8.13 | 8.12 | 8.11 | 8.10 | 8.11 | 8.10 | 8.11 |
Conventional Rp | 15.1 | 14.3 | 15.3 | 20.9 | 27.4 | 14.5 | 14.8 |
Conventional Rwp | 17.8 | 16.8 | 18.2 | 26.4 | 33.2 | 17.0 | 17.9 |
Conventional Rexp | 6.16 | 5.87 | 6.32 | 9.43 | 10.42 | 5.85 | 6.28 |
Chi2 | 8.35 | 8.22 | 8.32 | 7.83 | 10.1 | 8.43 | 8.15 |
Chi2 (Bragg contr.) | 9.06 | 8.80 | 8.76 | 8.02 | 10.5 | 8.90 | 8.61 |
DW-stat. | 0.5041 | 0.5115 | 0.5048 | 0.4984 | 0.3805 | 0.5005 | 0.5215 |
DW-exp. | 1.9741 | 1.9792 | 1.9821 | 1.9863 | 1.9805 | 1.9857 | 1.9818 |
GoF | 2.9 | 2.8 | 2.8 | 2.8 | 3.1 | 2.9 | 2.8 |
Grossular RB | 6.35 | 5.54 | 6.56 | 10.0 | 16.2 | 6.39 | 5.58 |
Grossular RF | 2.23 | 1.86 | 2.19 | 4.04 | 9.36 | 2.06 | 1.89 |
Chlorite RB | 5.75 | 5.34 | 6.44 | 9.64 | 20.2 | 5.66 | 6.10 |
Chlorite RF | 1.78 | 1.49 | 1.95 | 3.89 | 8.10 | 1.67 | 1.88 |
Average RB | 6.23 | 5.50 | 6.54 | 9.93 | 17.23 | 6.27 | 5.66 |
Average RF | 2.14 | 1.79 | 2.14 | 4.02 | 9.04 | 1.99 | 1.89 |
Site | Fddd a | Fddd b | ||||
---|---|---|---|---|---|---|
Coord. | sof’s | Coord. | sof’s | |||
8a $ | Ca1 | x | 0.375 | 0.250 (0) * | 0.375 | 0.250 (0) |
y | 0.875 | 0.875 | ||||
z | 0.375 | 0.375 | ||||
8b | Ca2 | x | 0.125 | 0.250 (0) | 0.125 | 0.250 (0) |
y | 0.625 | 0.625 | ||||
z | 0.125 | 0.125 | ||||
32h | Ca3 | x | 0.436(2) | 1.000 (0) | 0.4370(4) | 1.000 (0) |
y | 0.563(5) | 0.5633(4) | ||||
z | 0.251(4) | 0.2533(6) | ||||
16c | Al1 | x | 0.250 | 0.57 (6) | 0.250 | 0.49 (6) |
y | 0.000 | 0.000 | ||||
z | 0.250 | 0.250 | ||||
Fe1 | x | 0.250 | −0.07 (6) | 0.250 | 0.01 (6) | |
y | 0.000 | 0.000 | ||||
z | 0.250 | 0.250 | ||||
16d | Al2 | x | 0.250 | 0.46 (6) | 0.250 | 0.41 (6) |
y | 0.500 | 0.500 | ||||
z | 0.250 | 0.250 | ||||
Fe2 | x | 0.250 | 0.04 (6) | 0.250 | 0.09 (6) | |
y | 0.500 | 0.500 | ||||
z | 0.250 | 0.250 | ||||
16g | Si1 | x | 0.375 | 0.500 (0) | 0.375 | 0.500 (0) |
y | 0.875 | 0.875 | ||||
z | 0.115(7) | 0.125(1) | ||||
32h | Si2 | x | 0.319(3) | 1.000 (0) | 0.3203(5) | 1.000 (0) |
y | 0.689(6) | 0.6919(6) | ||||
z | 0.242(4) | 0.2450(9) | ||||
32h | O1 | x | 0.291(6) | 1.000 (0) | 0.2914(7) | 1.000 (0) |
y | 0.74(1) | 0.7540(6) | ||||
z | 0.35(1) | 0.344(1) | ||||
32h | O2 | x | 0.304(7) | 1.000 (0) | 0.3036(6) | 1.000 (0) |
y | 0.90(1) | 0.902(1) | ||||
z | 0.21(1) | 0.2116(9) | ||||
32h | O3 | x | 0.415(5) | 1.000 (0) | 0.4135(7) | 1.000 (0) |
y | 0.694(9) | 0.6951(7) | ||||
z | 0.19(1) | 0.204(1) | ||||
32h | O4 | x | 0.154(7) | 1.000 (0) | 0.151(1) | 1.000 (0) |
y | 0.554(8) | 0.5528(6) | ||||
z | 0.30(1) | 0.2884(9) | ||||
32h | O5 | x | 0.308(7) | 1.000 (0) | 0.3070(7) | 1.000 (0) |
y | 0.60(1) | 0.6010(8) | ||||
z | 0.29(1) | 0.293(1) | ||||
32h | O6 | x | 0.247(7) | 1.000 (0) | 0.2471(6) | 1.000 (0) |
y | 0.709(8) | 0.7066(8) | ||||
z | 0.16(6) | 0.155(1) | ||||
Al1 | 114(11) | 103 (11) | 97(13) | 90 (13) | ||
Al2 | 92(11) | 83(13) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tančić, P.; Dušanić, S.; Erić, S. Orthorhombic Crystal Structure of Grossular Garnet (Suva Česma, Western Serbia): Evidence from the Rietveld Refinement. Powders 2023, 2, 387-402. https://doi.org/10.3390/powders2020023
Tančić P, Dušanić S, Erić S. Orthorhombic Crystal Structure of Grossular Garnet (Suva Česma, Western Serbia): Evidence from the Rietveld Refinement. Powders. 2023; 2(2):387-402. https://doi.org/10.3390/powders2020023
Chicago/Turabian StyleTančić, Pavle, Slađana Dušanić, and Suzana Erić. 2023. "Orthorhombic Crystal Structure of Grossular Garnet (Suva Česma, Western Serbia): Evidence from the Rietveld Refinement" Powders 2, no. 2: 387-402. https://doi.org/10.3390/powders2020023
APA StyleTančić, P., Dušanić, S., & Erić, S. (2023). Orthorhombic Crystal Structure of Grossular Garnet (Suva Česma, Western Serbia): Evidence from the Rietveld Refinement. Powders, 2(2), 387-402. https://doi.org/10.3390/powders2020023