Parameterization by Statistical Theory on Turbulence Applied to the BAM-INPE Global Meteorological Model
Abstract
1. Introduction
2. BAM: The Brazilian Global Atmospheric Model
- 1.
- The Holtslag–Boville first-order representation of turbulent flows [4] takes into account a counter gradient term (computed for convective layer), modeling local and non-local schemes for vertical diffusion.
- 2.
- The University of Washington Moist Turbulence (UWMT) developed by Christopher S. Bretherton and Bretherton–Park [19] is a first-order moist turbulence parameterization improved for numerical stability and efficiency with the long time steps used in climate models, with the original goal of providing a more physically realistic treatment of marine stratocumulus-topped boundary layers.
- 3.
- The Mellor–Yamada second-order PBL turbulence model [5], an experience realized at Princeton University, is the result of a collection of studies carried out by the authors and others that culminated in a set of physical models based on the hypotheses of Rotta and Kolmogorov.
3. Turbulence Parameterization from Taylor’s Statistical Theory
3.1. The Turbulence Parameters
3.1.1. Stable Boundary Layer (SBL) and Neutral Boundary Layer (NBL)
3.1.2. Convective Boundary Layer (CBL)
3.2. Modeling Different PBL Stability Conditions
4. Experiment and Model Configuration
- Gaseous absorption parameterization for shortwave (SW) radiation and long-wave (LW) radiation: CLIRAD [38];
- Cumulus Parameterization: Arakawa-Schubert [39];
- Ocean model: slab (forced fixed condition in which all quantities are assumed to be completely and instantaneously homogenized [40]);
- Snow model: Simplified Simple Biosphere SSiB [41];
- Soil–vegetation–atmosphere scheme: Integrated Biosphere Simulator Model IBIS [42].
- dry season: 15 September 2012;
- wet season: 15 January 2012.
- Mean Relative Error (MRE): percentage difference in relation to ERA5 data:
- Mean Difference (MD): sub-estimation or the super-estimation BAM output in relation to ERA5 data using the same physical units:
- Root Mean Square Error (RMSE): real (absolute) error in the same physical units of the original data. This is the chosen error calculation to evaluate most of the experiment:
5. Results and Discussion
5.1. The Simulated Maps
5.2. Dry Season
5.2.1. Time Mean Temperature at 2 m
5.2.2. Planetary Boundary Layer Height
5.2.3. Outgoing Longwave at Top
5.2.4. Cloud Cover
5.2.5. Total Precipitation
5.2.6. Comparative Discussion
5.3. Wet Season
5.3.1. Time Mean Temperature at 2 m
5.3.2. Planetary Boundary Layer Height
5.3.3. Outgoing Longwave at Top
5.3.4. Total Precipitation
5.3.5. Comparative Discussion
5.4. Global Results
5.5. Full South America Results
5.6. Amazon Region Results
Comparative Discussion
5.7. Net Radiation
5.8. Experiment Afterwords
5.9. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Taylor Theorem
References
- Stull, R.B. An Introduction to Boundary Layer Meteorology; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1988. [Google Scholar]
- Foken, T. Micrometeorology, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Degrazia, G.A.; Anfossi, D.; Carvalho, J.C.; Mangia, C.; Tirabassi, T.; Campos Velho, H.F. Turbulence parameterization for PBL dispersion models in all stability conditions. Atmos. Environ. 2000, 34, 3575–3583. [Google Scholar] [CrossRef]
- Holtslag, A.; Boville, B.A. Local versus nonlocal boundary-layer diffusion in a global climate model. J. Clim. 1993, 6, 1825–1842. [Google Scholar] [CrossRef]
- Mellor, G.L.; Yamada, T. Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Phys. Space Phys. 1982, 20, 851–875. [Google Scholar] [CrossRef]
- Goger, B.; Rotach, M.W.; Gohm, A.; Stiperski, I.; Fuhrer, O.; de Morsier, G. A New Horizontal Length Scale for a Three-Dimensional Turbulence Parameterization in Mesoscale Atmospheric Modeling over Highly Complex Terrain. J. Appl. Meteorol. Climatol. 2019, 58, 2087–2102. [Google Scholar] [CrossRef]
- Li, Q.; van Roekel, L. Towards multiscale modeling of ocean surface turbulent mixing using coupled MPAS-Ocean v6.3 and PALM v5.0. Geosci. Model Dev. 2021, 4, 2011–2028. [Google Scholar] [CrossRef]
- Zhu, P.; Fung, K.Y.; Zhang, X.; Zhang, J.A.; Bao, W.; Wang, K.; Liu, B.; Zhang, Z.; Harris, L.; Gao, K.; et al. Toward a unified parameterization of three dimensional turbulent transport in high resolution numerical weather prediction models. NPJ Clim. Atmos. Sci. 2025, 8, 223. [Google Scholar] [CrossRef]
- Degrazia, G.A.; Moraes, O.L.L. A model for eddy diffusivity in a stable boundary layer. Bound.-Layer Meteorol. 1992, 58, 205–214. [Google Scholar] [CrossRef]
- Roberti, R.R.; Souto, R.P.; Campos Velho, H.F.; Degrazia, G.A.; Anfossi, D. Parallel Implementation of a Lagrangian Stochastic Model for Pollutant Dispersion. J. Parallel Program. 2005, 3, 485–498. [Google Scholar] [CrossRef]
- Carvalho, J.C.; Degrazia, G.A.; Anfonssi, D.; Campos, C.R.J.; Roberti, D.R.; Kerr, A.S. Lagrangian stochastic dispersion modelling for the simulation of the release of contaminants from tall and low sources. Meteorol. Z. 2002, 11, 89–97. [Google Scholar] [CrossRef]
- Rizza, U.; Degrazia, G.A.; Moreira, D.M.; Brauer, C.R.N.; Mangia, C.; Campos, C.R.J.; Tirabassi, T. Turbulent dispersion from tall stack in the unstable boundary layer: A comparison between Gaussian and K-diffusion modelling for nonbuoyant emissions. Nuovo C 2001, 24, 805–814. [Google Scholar]
- Barbosa, J.P.S.; Campos Velho, H.F.; Freitas, S.R. Implementação de Novas Parametrizações de Turbulência no BRAMS. Ciência Nat. 2007, 111, 301–305. [Google Scholar]
- Schünzen, K.H. Mesoscale Modelling in Complex Terrain—An Overview on the German Nonhydrostatic Models. Meteorol. Z. 1994, 67, 243–253. [Google Scholar]
- Taylor, G.I. Diffusion by continuous movements. Proc. Lond. Math. Soc. 1922, 2, 196–212. [Google Scholar] [CrossRef]
- Figueroa, S.N.; Bonatti, J.P.; Kubota, P.Y.; Grell, G.A.; Morrison, H.; Barros, S.R.; Fernandez, J.P.; Ramirez, E.; Siqueira, L.; Luzia, G.; et al. The Brazilian global atmospheric model (BAM): Performance for tropical rainfall forecasting and sensitivity to convective scheme and horizontal resolution. Weather. Forecast. 2016, 31, 1547–1572. [Google Scholar] [CrossRef]
- Lemes, M.D.C.R.; de Oliveira, G.S.; Fisch, G.; Tedeschi, R.G.; da Silva, J.P.R. Analysis of moisture transport from Amazonia to Southeastern Brazil during the austral summer. Rev. Bras. Geogr. Física 2020, 13, 2650–2670. [Google Scholar] [CrossRef]
- Yang, Z.; Dominguez, F. Investigating Land Surface Effects on the Moisture Transport over South America with a Moisture Tagging. Model. J. Clim. 2019, 32, 6627–6644. [Google Scholar] [CrossRef]
- Bretheron, S.C.; Park, S. A new moist turbulence parameterization in the Community Atmosphere. Model. J. Clim. 2009, 22, 3422–3448. [Google Scholar] [CrossRef]
- Bonatti, J.P. Modelo de circulação geral atmosférico do CPTEC. Climanálise Especial 10 anos. Seção 1996, 26. Available online: http://climanalise.cptec.inpe.br/~rclimanl/boletim/cliesp10a/ (accessed on 6 September 2025).
- Cintra, R. Implementação do Sistema Estatístico de Assimilação de Dados em Espaço físico para o Modelo Global do CPTEC. Master’s Thesis, INPE: São Paulo, Brazil, 2004. [Google Scholar]
- Coelho, C.A.; de Souza, D.C.; Kubota, P.Y.; Costa, S.M.; Menezes, L.; Guimarães, B.S.; Figueroa, S.N.; Bonatti, J.P.; Cavalcanti, I.F.A.; Sampaio, G.; et al. Evaluation of climate simulations produced with the Brazilian global atmospheric model version 1.2. Clim. Dyn. 2021, 56, 873–898. [Google Scholar] [CrossRef]
- ONS. Operador Nacional do Sistema Elétrico. Available online: https://www.ons.org.br/ (accessed on 6 September 2025).
- FUNCEME. Fundação Cearense de Meteorologia e Chuvas Artificiais. 2022. Available online: http://www.funceme.br/ (accessed on 6 September 2025).
- Roberts, P.J.W.; Webster, D.R. “Turbulent Diffusion” (Chapter). In Environmental Fluid Mechanics: Theories and Applications; Shen, H.H., Cheng, A.H.D., Wang, K.-H., Teng, M.H., Liu, C.C.K., Eds.; ASCE Press: Reston, VI, USA, 2002. [Google Scholar]
- Batchelor, G. The Life and Legacy of G. I. Taylor; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Batchelor, G.K. Diffusion in a Field of Homogeneous Turbulence, Eulerian Analysis. Aust. J. Sci. Res. 1949, 2, 437–450. [Google Scholar] [CrossRef]
- Degrazia, G.A.; Campos Velho, H.F.; Carvalho, J.C. Nonlocal Exchange Coefficients for the Convective Boundary Layer Derived From Spectral Properties. Beiträge zur Physic der Atmosphäre 1997, 70, 57–64. [Google Scholar]
- Olesen, H.R.; Larsen, S.E.; Højstrup, J. Modelling velocity spectra in the lower part of the planetary boundary layer. Bound.-Layer Meteorol. 1984, 29, 285–312. [Google Scholar] [CrossRef]
- Sorbjan, Z. Structure of the Atmospheric Boundary Layer; Prentice Hall: Upper Saddle River, NJ, USA, 1989. [Google Scholar]
- Nieuwstadt, F.T.M. Nieuwstadt, The turbulent structure of the stable nocturnal boundary layer. J. Atmos. Sci. 1984, 41, 2202–2216. [Google Scholar] [CrossRef]
- Kaimal, J.C.; Wyngaard, J.C. The kansas and minnesota experiments. Bound.-Layer Meteorol. 1990, 50, 31–47. [Google Scholar] [CrossRef]
- Monna, W.A.A.; Van Der Vliet, J.G. Facilities for Research and Weather Observations on the 213 m Tower at Cabauw and at Remote Locations; KNMI: De Bilt, The Netherlands, 1987. [Google Scholar]
- Campos Velho, H.F. Modelagem Matemática em Turbulência Atmosférica; Notas em Matemática Aplicada-No. 48; Sociedade Brasileira de Matemática Aplicada and Computacional (SBMAC): São Paulo, Brazil, 2010. [Google Scholar]
- Zilitinkevich, S.S. On the determination of the height of the Ekman boundary layer. Bound.-Layer Meteorol. 1972, 3, 141–145. [Google Scholar] [CrossRef]
- Vogelezang, D.H.P.; Holtslag, A.A.M. Evaluation and model impacts of alternative boundary-layer height formulations. Bound.-Layer Meteorol. 1996, 81, 245–269. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 Hourly Data on Single Levels from 1959 to Present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). 2018. Available online: https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview (accessed on 6 September 2025).
- Tarasova, T.A.; Fomin, B.A. The use of new parameterizations for gaseous absorption in the CLIRAD-SW solar radiation code for models. J. Atmos. Ocean. Technol. 2007, 24, 1157–1162. [Google Scholar] [CrossRef]
- Randall, D.A.; Pan, D.M. Implementation of the Arakawa-Schubert cumulus parameterization with a prognostic closure. In The Representation of Cumulus Convection in Numerical Models; American Meteorological Society: Boston, MA, USA, 1993. [Google Scholar]
- AMS. Glossary of Meteorology. Available online: https://glossary.ametsoc.org/wiki/Slab_model (accessed on 6 September 2025).
- Xue, Y.; Zeng, F.; Schlosse, C. A simplified Simple Biosphere Model (SSiB) and its application to land-atmosphere interactions. Journal of Climate. 1991, 4, 345–364. [Google Scholar] [CrossRef]
- Foley, J.A.; Prentice, I.C.; Ramankutty, N.; Levis, S.; Pollard, D.; Sitch, S.; Haxeltine, A. An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Glob. Biogeochem. Cycles 1996, 10, 603–628. [Google Scholar] [CrossRef]
- Deardorff, J.W. The Counter-Gradient Heat Flux in the Lower Atmosphere and in the Laboratory. J. Atmos. Sci. 1966, 23, 503–506. [Google Scholar] [CrossRef]
- Troen, I.B.; Mahrt, L. A Simple Model of the Atmospheric Boundary Layer, Sensitivity to Surface Evaporation. Bound.-Layer Meteorol. 1986, 37, 129–148. [Google Scholar] [CrossRef]
- Santos, A.F.; Freitas, S.R.; Mattos, J.G.Z.; Campos Velho, H.F.; Gan, M.A.; Luz, E.F.P. Grell: Using the firefly optimization method to weight an ensemble of rainfall forecasts from the Brazilian developments on the Regional Atmospheric Modeling System (BRAMS). Adv. Geosci. 2013, 35, 123–136. [Google Scholar] [CrossRef]
- Luz, E.F.P.; Santos, A.F.; Freitas, S.R.; Campos Velhos, H.F.; Grell, G.A. Optimization by firefly with predation for ensemble precipitation estimation using BRAMS. Am. J. Environ. Eng. 2015, 5, 27–33. [Google Scholar]
Initial Conditions | Parameterizations Methods | Simulations |
---|---|---|
Wet Season: 15 January 2012 at 12:00 PM | Holtslag–Boville (First-Order) Bretherton–Park (First-Order) | 7 days (168 h) using TQ62 (∼215 km) resolution |
Dry Season: 15 September 2012 as 12:00 PM | Mellor–Yamada (Second-Order) Taylor (First-Order) | 15 days (360 h) using TQ126 (∼106 km) resolution |
Data: ERA5 hourly data on single levels from 1959 to the present |
BAM | ERA5 | ||
---|---|---|---|
Variable Name | Unit | Variable Name | Unit |
Time mean temperature at 2 m | K | Temperature at 2 m | K |
Planetary boundary layer height | m | Boundary layer height | m |
Outgoing Longwave at the Top | W | Top net thermal radiation | J |
Cloud cover | ND | Total cloud cover | [0, 1] |
Total precipitation | kg ( day)−1 | Mean total precipitation rate | kg ( s)−1 |
September (dry season for the Brazilian Amazon) | |||||
Method | timeMeanTemperatureAt2m | planetaryBoundaryLayerHeight | outgoingLongwaveAtTop | cloudCover | totalPrecipitation |
H-B | 3.43 °K | 416 m | 35.46 Wm−2 | 38.22% | 12.52 kg (m2; day)−1 |
B-P | 3.19 °K | 601 m | 35.19 Wm−2 | 39.91% | 12.49 kg (m2; day)−1 |
Taylor | 3.80 °K | 494 m | 34.40 Wm−2 | 37.70% | 11.99 kg (m2; day)−1 |
M-Y | 3.61 °K | 535 m | 35.71 Wm−2 | 39.05% | 12.43 kg (m2; day)−1 |
January (wet season for the Brazilian Amazon) | |||||
Method | timeMeanTemperatureAt2m | planetaryBoundaryLayerHeight | outgoingLongwaveAtTop | cloudCover | totalPrecipitation |
H-B | 4.50 °K | 385 m | 34.72 Wm−2 | 37.68% | 12.76 kg (m2; day)−1 |
B-P | 4.08 °K | 569 m | 34.58 Wm−2 | 39.39% | 12.88 kg (m2; day)−1 |
Taylor | 4.67 °K | 469 m | 34.05 Wm−2 | 37.53% | 12.32 kg(m2; day)−1 |
M-Y | 4.64 °K | 471 m | 35.12 Wm−2 | 38.39% | 12.75 kg (m2; day)−1 |
dry season | |||||
Method | timeMeanTemperatureAt2m | planetaryBoundaryLayerHeight | outgoingLongwaveAtTop | cloudCover | totalPrecipitation |
H-B | 3.02 °K | 422 m | 37.42 Wm−2 | 38.98% | 13.23 kg (m2; day)−1 |
B-P | 2.83 °K | 586 m | 37.64 Wm−2 | 41.02% | 13.19 kg (m2; day)−1 |
Taylor | 3.40 °K | 493 m | 36.60 Wm−2 | 38.08% | 12.22 kg (m2; day)−1 |
M-Y | 3.23 °K | 533 m | 38.85 Wm−2 | 39.90% | 12.79 kg (m2; day)−1 |
wet season | |||||
Method | timeMeanTemperatureAt2m | planetaryBoundaryLayerHeight | outgoingLongwaveAtTop | cloudCover | totalPrecipitation |
H-B | 2.90 °K | 418 m | 40.33 Wm−2 | 37.10% | 15.54 kg (m2; day)−1 |
B-P | 2.68 °K | 567 m | 39.79 Wm−2 | 37.95% | 15.28 kg (m2; day)−1 |
Taylor | 3.33 °K | 484 m | 39.95 Wm−2 | 37.42% | 14.71 kg (m2; day)−1 |
M-Y | 3.13 °K | 491 m | 40.63 Wm−2 | 37.56% | 14.62 kg (m2; day)−1 |
dry season | |||||
Method | timeMeanTemperatureAt2m | planetaryBoundaryLayerHeight | outgoingLongwaveAtTop | cloudCover | totalPrecipitation |
H-B | 3.03 °K | 500 m | 37.27 Wm−2 | 40.91% | 13.80 kg (m2; day)−1 |
B-P | 3.53 °K | 383 m | 37.44 Wm−2 | 42.51% | 14.51 kg (m2; day)−1 |
Taylor | 2.52 °K | 408 m | 35.23 Wm−2 | 38.44% | 12.57 kg (m2; day)−1 |
M-Y | 3.82 °K | 742 m | 39.37 Wm−2 | 40.45% | 12.81 kg (m2; day)−1 |
wet season | |||||
Method | timeMeanTemperatureAt2m | planetaryBoundaryLayerHeight | outgoingLongwaveAtTop | cloudCover | totalPrecipitation |
H-B | 2.10 °K | 336 m | 60.84 Wm−2 | 19.39% | 22.88 kg (m2; day)−1 |
B-P | 2.18 °K | 273 m | 60.67 Wm−2 | 19.16% | 22.69 kg (m2; day)−1 |
Taylor | 2.04 °K | 287 m | 60.47 Wm−2 | 19.60% | 21.42 kg (m2; day)−1 |
M-Y | 2.27 °K | 365 m | 61.99 Wm−2 | 20.07% | 21.02 kg (m2; day)−1 |
GLB | FSA | AMZ | |
---|---|---|---|
H-B | 73.4597 | 65.9437 | 55.5906 |
B-P | 72.7019 | 65.3901 | 60.0827 |
Taylor | 90.3283 | 76.7280 | 53.7867 |
M-Y | 74.6171 | 66.9587 | 55.3842 |
GLB | FSA | AMZ | |
---|---|---|---|
H-B | 102.9497 | 106.5917 | 118.3482 |
B-P | 103.1809 | 106.1878 | 119.0044 |
Taylor | 113.8907 | 111.7826 | 116.8788 |
M-Y | 104.1775 | 106.2570 | 119.0742 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eras, E.R.; Kubota, P.Y.; Anochi, J.A.; de Campos Velho, H.F. Parameterization by Statistical Theory on Turbulence Applied to the BAM-INPE Global Meteorological Model. Meteorology 2025, 4, 25. https://doi.org/10.3390/meteorology4030025
Eras ER, Kubota PY, Anochi JA, de Campos Velho HF. Parameterization by Statistical Theory on Turbulence Applied to the BAM-INPE Global Meteorological Model. Meteorology. 2025; 4(3):25. https://doi.org/10.3390/meteorology4030025
Chicago/Turabian StyleEras, Eduardo R., Paulo Y. Kubota, Juliana A. Anochi, and Haroldo F. de Campos Velho. 2025. "Parameterization by Statistical Theory on Turbulence Applied to the BAM-INPE Global Meteorological Model" Meteorology 4, no. 3: 25. https://doi.org/10.3390/meteorology4030025
APA StyleEras, E. R., Kubota, P. Y., Anochi, J. A., & de Campos Velho, H. F. (2025). Parameterization by Statistical Theory on Turbulence Applied to the BAM-INPE Global Meteorological Model. Meteorology, 4(3), 25. https://doi.org/10.3390/meteorology4030025