Frequency and Intensity of Landfalling Tropical Cyclones in East Asia: Past Variations and Future Projections
Abstract
:1. Introduction
2. Data and Methodology
3. Climatology
4. Temporal Variations of Landfalling TCs
4.1. Frequency of Landfall
4.1.1. Entire EA Coast
4.1.2. China Coast
4.1.3. Vietnam
4.1.4. Philippines
4.1.5. Korean Peninsula
4.1.6. Japan
4.1.7. Summary
4.2. Intensity
4.2.1. Entire EA Coast
4.2.2. China Coast
4.2.3. Vietnam
4.2.4. Philippines
4.2.5. Korean Peninsula and Japan
4.2.6. Summary
5. Possible Drivers
5.1. Interannual Variations
5.2. Interdecadal Variations
5.3. Summary
6. Future Projections
7. Summary and Discussion
7.1. Summary
7.2. Discussion
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Rodionov, S.N. A sequential algorithm for testing climate regime shifts. Geophys. Res. Lett. 2004, 31, L09204. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Wang, B.; Geng, S. Growing typhoon influence on east Asia. Geophys. Res. Lett. 2005, 32, L18703. [Google Scholar] [CrossRef] [Green Version]
- Guan, S.; Li, S.; Hou, Y.; Hu, P.; Liu, Z.; Feng, J. Increasing threat of landfalling typhoons in the western North Pacific between 1974 and 2013. Int. J. Appl. Earth Obs. Geoinf. 2018, 68, 279–286. [Google Scholar] [CrossRef]
- Liu, K.S.; Chan, J.C.L. Variations of power dissipation index in the East Asia region. Clim. Dyn. 2017, 48, 1963–1985. [Google Scholar] [CrossRef]
- Liu, K.S.; Chan, J.C.L. Changing relationship between La Niña and tropical cyclone landfalling activity in South China. Int. J. Climatol. 2018, 38, 1270–1284. [Google Scholar] [CrossRef]
- Liu, K.S.; Chan, J.C.L. Interdecadal Variability of Western North Pacific Tropical Cyclone Tracks. J. Clim. 2008, 21, 4464–4476. [Google Scholar] [CrossRef]
- Chan, J.C.L.; Xu, M. Interannual and interdecadal variations of landfalling tropical cyclones in East Asia. Part I: Time series analysis. Int. J. Climatol. 2009, 29, 1285–1293. [Google Scholar] [CrossRef]
- Liu, K.S.; Chan, J.C.L. Interdecadal variation of frequencies of tropical cyclones, intense typhoons and their ratio over the western North Pacific. Int. J. Climatol. 2020, 40, 3954–3970. [Google Scholar] [CrossRef]
- Li, R.C.Y.; Zhou, W.; Shun, C.M.; Lee, T.C. Change in Destructiveness of Landfalling Tropical Cyclones over China in Recent Decades. J. Clim. 2017, 30, 3367–3379. [Google Scholar] [CrossRef]
- Zhang, C.; Hu, C.; Huang, G.; Yao, C.; Zheng, Z.; Wang, T.; Wu, Z.; Yang, S.; Chen, D. Perspective on Landfalling Frequency and Genesis Location Variations of Southern China Typhoon During Peak Summer. Geophys. Res. Lett. 2019, 46, 6830–6838. [Google Scholar] [CrossRef] [Green Version]
- Shan, K.; Yu, X. Variability of Tropical Cyclone Landfalls in China. J. Clim. 2021, 34, 9235–9247. [Google Scholar] [CrossRef]
- Tran-Quang, D.; Pham-Thanh, H.; Vu, T.-A.; Kieu, C.; Phan-Van, T. Climatic Shift of the Tropical Cyclone Activity Affecting Vietnam’s Coastal Region. J. Appl. Meteorol. Climatol. 2020, 59, 1755–1768. [Google Scholar] [CrossRef]
- Kubota, H.; Chan, J.C.L. Interdecadal variability of tropical cyclone landfall in the Philippines from 1902 to 2005. Geophys. Res. Lett. 2009, 36, L12802. [Google Scholar] [CrossRef] [Green Version]
- Cinco, T.A.; de Guzman, R.G.; Ortiz, A.M.D.; Delfino, R.J.P.; Lasco, R.D.; Hilario, F.D.; Juanillo, E.L.; Barba, R.; Ares, E.D. Observed trends and impacts of tropical cyclones in the Philippines. Int. J. Climatol. 2016, 36, 4638–4650. [Google Scholar] [CrossRef] [Green Version]
- Choi, K.-S.; Kim, B.-J.; Kim, D.-W.; Byun, H.-R. Interdecadal variation of tropical cyclone making landfall over the Korean Peninsula. Int. J. Climatol. 2009, 30, 1472–1483. [Google Scholar] [CrossRef]
- Choi, K.-S.; Moon, I.-J. Changes in tropical cyclone activity that has affected Korea since 1999. Nat. Hazards 2012, 62, 971–989. [Google Scholar] [CrossRef]
- Grossman, M.J.; Zaiki, M.; Nagata, R. Interannual and interdecadal variations in typhoon tracks around Japan. Int. J. Climatol. 2014, 35, 2514–2527. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Maeda, S. Increase in the Number of Tropical Cyclones Approaching Tokyo since 1980. J. Meteorol. Soc. Jpn. Ser. II 2020, 98, 775–786. [Google Scholar] [CrossRef]
- Park, D.-S.R.; Ho, C.-H.; Kim, J.-H.; Kim, H.-S. Strong landfall typhoons in Korea and Japan in a recent decade. J. Geophys. Res. Atmos. 2011, 116, D07105. [Google Scholar] [CrossRef] [Green Version]
- Goh, A.Z.-C.; Chan, J.C.L. Variations and prediction of the annual number of tropical cyclones affecting Korea and Japan. Int. J. Climatol. 2010, 32, 178–189. [Google Scholar] [CrossRef]
- Kossin, J.P.; Emanuel, K.A.; Vecchi, G.A. The poleward migration of the location of tropical cyclone maximum intensity. Nature 2014, 509, 349–352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, K.S.; Chan, J.C.L.; Kubota, H. Meridional oscillation of tropical cyclone activity in the western North Pacific during the past 110 years. Clim. Chang. 2021, 164. [Google Scholar] [CrossRef]
- Park, D.-S.R.; Ho, C.-H.; Kim, J.-H. Growing threat of intense tropical cyclones to East Asia over the period 1977–2010. Environ. Res. Lett. 2014, 9, 014008. [Google Scholar] [CrossRef] [Green Version]
- Mei, W.; Xie, W.M.S.-P. Intensification of landfalling typhoons over the northwest Pacific since the late 1970s. Nat. Geosci. 2016, 9, 753–757. [Google Scholar] [CrossRef]
- Liu, K.S.; Chan, J.C.L. Inter-decadal variability of the location of maximum intensity of category 4–5 typhoons and its implication on landfall intensity in East Asia. Int. J. Climatol. 2018, 39, 1839–1852. [Google Scholar] [CrossRef]
- Liu, K.S.; Chan, J.C.L. Growing Threat of Rapidly-Intensifying Tropical Cyclones in East Asia. Adv. Atmos. Sci. 2022, 39, 222–234. [Google Scholar] [CrossRef]
- Li, G.; Li, Q.; Xu, Y.; Xu, P.; Wang, W.; Huang, D.; Wu, Y.; He, L. Changes of Tropical Cyclones Landfalling in China from 1979 to 2018. J. Geophys. Res. Atmos. 2022, 127, e2022JD036701. [Google Scholar] [CrossRef]
- Liu, K.S.; Chan, J.C.L. Recent increase in extreme intensity of tropical cyclones making landfall in South China. Clim. Dyn. 2020, 55, 1059–1074. [Google Scholar] [CrossRef]
- Liu, L.; Wang, Y.; Zhan, R.; Xu, J.; Duan, Y. Increasing Destructive Potential of Landfalling Tropical Cyclones over China. J. Clim. 2020, 33, 3731–3743. [Google Scholar] [CrossRef]
- Chan, J.C.L. Tropical cyclone activity in the northwest Pacific in relation to the El Niño/Southern Oscillation phenomenon. Mon. Weather Rev. 1985, 113, 599–606. [Google Scholar] [CrossRef]
- Chan, J.C.L. Tropical cyclone activity over the western North Pacific associated with El Niño and La Niña events. J. Clim. 2000, 13, 2960–2972. [Google Scholar] [CrossRef]
- Wang, B.; Chan, J.C.L. How Strong ENSO Events Affect Tropical Storm Activity over the Western North Pacific. J. Clim. 2002, 15, 1643–1658. [Google Scholar] [CrossRef]
- Lin, I.I.; Camargo, S.; Patricola, C.; Boucharel, J.; Chand, S.; Klotzbach, P.; Chan, J.; Wang, B.; Chang, P.; Li, T.; et al. ENSO and Tropical Cyclones. In El Niño Southern Oscillation in a Changing Climate, Geophysical Monograph 253, 1st ed.; McPhaden, M.J., Santoso, A., Cai, W., Eds.; American Geophysical Union: Washington, DC, USA, 2021. [Google Scholar]
- Zhou, X.; Lu, R. Interannual Variability of the Tropical Cyclone Landfall Frequency over the Southern and Northern Regions of East Asia in Autumn. J. Clim. 2019, 32, 8677–8686. [Google Scholar] [CrossRef]
- Zhang, W.; Graf, H.-F.; Leung, Y.; Herzog, M. Different El Niño Types and Tropical Cyclone Landfall in East Asia. J. Clim. 2012, 25, 6510–6523. [Google Scholar] [CrossRef]
- Wu, M.C.; Chang, W.; Leung, W.M. Impacts of El Niño-Southern Oscillation events on tropical cyclone landfalling activity in the western North Pacific. J. Clim. 2004, 17, 1419–1428. [Google Scholar] [CrossRef]
- Ho, C.-H.; Kim, H.-S. Reexamination of the influence of ENSO on landfalling tropical cyclones in Korea. Asia-Pac. J. Atmos. Sci. 2011, 47, 457–462. [Google Scholar] [CrossRef]
- Zhang, H.; Guan, Y. Impacts of four types of ENSO events on tropical cyclones making landfall over mainland china based on three best-track datasets. Adv. Atmos. Sci. 2013, 31, 154–164. [Google Scholar] [CrossRef]
- Yonekura, E.; Hall, T.M. ENSO Effect on East Asian Tropical Cyclone Landfall via Changes in Tracks and Genesis in a Statistical Model. J. Appl. Meteorol. Climatol. 2014, 53, 406–420. [Google Scholar] [CrossRef] [Green Version]
- Gao, S.; Chen, Z.; Zhang, W. Impacts of Tropical North Atlantic SST on Western North Pacific Landfalling Tropical Cyclones. J. Clim. 2018, 31, 853–862. [Google Scholar] [CrossRef]
- Gao, S.; Chen, Z.; Zhang, W.; Shen, X. Effects of tropical North Atlantic sea surface temperature on intense tropical cyclones landfalling in China. Int. J. Climatol. 2020, 41, 1056–1065. [Google Scholar] [CrossRef]
- Wang, L.; Chen, G. Impact of the Spring SST Gradient between the Tropical Indian Ocean and Western Pacific on Landfalling Tropical Cyclone Frequency in China. Adv. Atmos. Sci. 2018, 35, 682–688. [Google Scholar] [CrossRef]
- Wang, L.; Chen, G. Relationship between South China Sea summer monsoon onset and landfalling tropical cyclone frequency in China. Int. J. Climatol. 2018, 38, 3209–3214. [Google Scholar] [CrossRef]
- Choi, K.-S.; Park, S.; Chang, K.-H.; Lee, J.-H. A possible relationship between East Indian Ocean SST and tropical cyclone affecting Korea. Nat. Hazards 2014, 76, 283–301. [Google Scholar] [CrossRef]
- Mantua, N.J.; Hare, S.R.; Zhang, Y.; Wallace, J.; Francis, R.C. A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Am. Meteor. Soc. 1997, 78, 1069–1079. [Google Scholar] [CrossRef]
- Yang, L.; Chen, S.; Wang, C.; Wang, D.; Wang, X. Potential impact of the Pacific Decadal Oscillation and sea surface temperature in the tropical Indian Ocean–Western Pacific on the variability of typhoon landfall on the China coast. Clim. Dyn. 2017, 51, 2695–2705. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.-W.; Cha, Y.; Lu, R. Possible Relationship between Korea Affecting Tropical Cyclone Activity and Pacific Decadal Oscillation in Summer. Asia-Pac. J. Atmos. Sci. 2019, 55, 557–573. [Google Scholar] [CrossRef]
- Choi, J.-W.; Kim, H.-D. Negative relationship between Korea landfalling tropical cyclone activity and Pacific Decadal Oscillation. Dyn. Atmos. Oceans 2019, 87, 101100. [Google Scholar] [CrossRef]
- Choi, J.; Kim, H. Possible combined effect of El Niño–Southern Oscillation and Pacific Decadal Oscillation on Korea affecting tropical cyclone passage frequency. Atmos. Sci. Lett. 2019, 21, e907. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Wang, C.; Zhang, L.; Wang, X. Multidecadal Variability of Tropical Cyclone Rapid Intensification in the Western North Pacific. J. Clim. 2015, 28, 3806–3820. [Google Scholar] [CrossRef]
- Gao, S.; Zhu, L.; Zhang, W.; Shen, X. Impact of the Pacific Meridional Mode on landfalling tropical cyclone frequency in China. Quart. J. Roy. Meteorol. Soc. 2020, 146, 2410–2420. [Google Scholar] [CrossRef]
- Chiang, J.C.H.; Vimont, D.J. Analogous Pacific and Atlantic Meridional Modes of Tropical Atmosphere–Ocean Variability. J. Clim. 2004, 17, 4143–4158. [Google Scholar] [CrossRef]
- Henley, B.J.; Gergis, J.; Karoly, D.J.; Power, S.; Kennedy, J.; Folland, C.K. A Tripole Index for the Interdecadal Pacific Oscillation. Clim. Dyn. 2015, 45, 3077–3090. [Google Scholar] [CrossRef]
- Knutson, T.; Camargo, S.J.; Chan, J.C.L.; Emanuel, K.; Ho, C.-H.; Kossin, J.; Mohapatra, M.; Satoh, M.; Sugi, M.; Walsh, K.; et al. Tropical Cyclones and Climate Change Assessment: Part I: Detection and Attribution. Bull. Am. Meteorol. Soc. 2019, 100, 1987–2007. [Google Scholar] [CrossRef] [Green Version]
- Knutson, T.; Camargo, S.J.; Chan, J.C.L.; Emanuel, K.; Ho, C.-H.; Kossin, J.; Mohapatra, M.; Satoh, M.; Sugi, M.; Walsh, K.; et al. Tropical Cyclones and Climate Change Assessment: Part II: Projected Response to Anthropogenic Warming. Bull. Am. Meteorol. Soc. 2020, 101, E303–E322. [Google Scholar] [CrossRef]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef] [Green Version]
- Tsuboki, K.; Yoshioka, M.K.; Shinoda, T.; Kato, M.; Kanada, S.; Kitoh, A. Future increase of supertyphoon intensity associated with climate change. Geophys. Res. Lett. 2015, 42, 646–652. [Google Scholar] [CrossRef]
- Mizuta, R.; Oouchi, K.; Yoshimura, H.; Noda, A.; Katayama, K.; Yukimoto, S.; Hosaka, M.; Kusunoki, S.; Kawai, H.; Nakagawa, M. 20-km-mesh global climate simulations using JMA-GSM model—Mean climate states. J. Meteor. Soc. Jpn. 2006, 84, 165–185. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Liang, J.; Hodges, K.I. Projections of tropical cyclones affecting Vietnam under climate change: Downscaled HadGEM2-ES using PRECIS 2.1. Quart. J. Roy. Meteorol. Soc. 2017, 143, 1844–1859. [Google Scholar] [CrossRef]
- Gallo, F.; Daron, J.; Macadam, I.; Cinco, T.; Villafuerte, M.; Buonomo, E.; Tucker, S.; Hein-Griggs, D.; Jones, R.G. High-resolution regional climate model projections of future tropical cyclone activity in the Philippines. Int. J. Climatol. 2018, 39, 1181–1194. [Google Scholar] [CrossRef] [Green Version]
- Lok, C.C.F.; Chan, J.C.L. Changes of tropical cyclone landfalls in Southern China throughout the twenty-first century. Clim. Dyn. 2018, 51, 2467–2483. [Google Scholar] [CrossRef]
- Lok, C.C.F.; Chan, J.C.L. Simulating seasonal tropical cyclone intensities at landfall along South China coast. Clim. Dyn. 2018, 50, 2661–2672. [Google Scholar] [CrossRef]
- Kanada, S.; Tsuboki, K.; Takayabu, I. Future changes of tropical cyclones in the midlatitudes in 4-km mesh downscaling experiments from large-ensemble simulations. SOLA 2020, 16, 57–63. [Google Scholar] [CrossRef] [Green Version]
- Mizuta, R.; Murata, A.; Ishii, M.; Shiogama, H.; Hibino, K.; Mori, N.; Arakawa, O.; Imada, Y.; Yoshida, K.; Aoyagi, T.; et al. Over 5,000 Years of Ensemble Future Climate Simulations by 60-km Global and 20-km Regional Atmospheric Models. Bull. Am. Meteorol. Soc. 2017, 98, 1383–1398. [Google Scholar] [CrossRef]
- Wu, J.; Gao, X.; Zhu, Y.; Shi, Y.; Giorgi, F. Projection of the Future Changes in Tropical Cyclone Activity Affecting East Asia over the Western North Pacific Based on Multi-RegCM4 Simulations. Adv. Atmos. Sci. 2021, 39, 284–303. [Google Scholar] [CrossRef]
- Hsu, P.; Chen, K.; Tsou, C.; Hsu, H.; Hong, C.; Liang, H.; Tu, C.; Kitoh, A. Future Changes in the Frequency and Destructiveness of Landfalling Tropical Cyclones Over East Asia Projected by High-Resolution AGCMs. Earth’s Future 2021, 9, e2020EF001888. [Google Scholar] [CrossRef]
Region | Number (Rounded off to Integer) | APDI |
---|---|---|
Japan | 3 | 113.2 |
Korean Peninsula | 1 | 18.5 |
Zhejiang Province | 1 | 29.3 |
Fujian Province | 2 | 42.9 |
Taiwan Island | 2 | 107.0 |
South China (Guangdong, Guangxi and Hainan provinces) | 5 | 114.7 |
Philippines | 6 | 307.7 |
Vietnam | 3 | 68.4 |
Region | Interannual Variation | Interdecadal Variation | Trend |
---|---|---|---|
South China |
|
|
|
East China |
|
|
|
Vietnam |
|
| |
Philippines |
|
|
|
Korean Peninsula |
|
|
|
Japan |
|
|
|
Region | Interdecadal Variation | Trend |
---|---|---|
South China |
| |
East China |
|
|
Vietnam |
| |
Philippines |
| |
Korean Peninsula |
| |
Japan |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chan, J.C.L. Frequency and Intensity of Landfalling Tropical Cyclones in East Asia: Past Variations and Future Projections. Meteorology 2023, 2, 171-190. https://doi.org/10.3390/meteorology2020012
Chan JCL. Frequency and Intensity of Landfalling Tropical Cyclones in East Asia: Past Variations and Future Projections. Meteorology. 2023; 2(2):171-190. https://doi.org/10.3390/meteorology2020012
Chicago/Turabian StyleChan, Johnny C. L. 2023. "Frequency and Intensity of Landfalling Tropical Cyclones in East Asia: Past Variations and Future Projections" Meteorology 2, no. 2: 171-190. https://doi.org/10.3390/meteorology2020012