An Analysis of the Synoptic Dynamic and Hydrologic Character of the Black Sea Cyclone Falchion
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. Study Region
2.3. Methods
3. Results
3.1. Synoptic-Dynamic Analysis
3.2. Moisture Analysis
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AR | atmospheric rivers |
BI | block intensity |
ERA5 | European Centre for Medium Range Forecasts (ECMWF) reanalyses set version 5 |
IR | infrared |
IVT | integrated water vapor transport |
LHF(s) | surface latent heat flux(es) |
LHR | latent heat release |
LPS | low-pressure system |
NARR | North American Regional Reanalyses |
NCEP/NCAR | National Centers for Environmental Prediction/National Center for Atmospheric Research |
NOAA | National Oceanic and Atmospheric Administration |
OISST | Optimum Interpolation SSTs |
PV | potential vorticity |
SLP | sea level pressure |
SST(s) | sea surface temperature(s) |
TC(s) | tropical cyclone(s) |
WISHE | wind induced surface heat exchange |
References
- Hosler, C.L.; Gamage, L.A. Cyclone frequencies in the United States for the period 1905–1954. Mon. Weather Rev. 1956, 84, 388–390. [Google Scholar] [CrossRef]
- Kung, E.C. Energy sources in middle-latitude synoptic-scale disturbances. J. Atmos. Sci. 1977, 34, 1352–1365. [Google Scholar] [CrossRef]
- Smith, P.J. The energetics of extratropical cyclones. Rev. Geophys. 1980, 18, 378–386. [Google Scholar] [CrossRef]
- Okajima, S.; Nakamura, H.; Kaspi, Y. Cyclonic and anticyclonic contributions to atmospheric energetics. Nat. Sci. Rep. 2021, 11, 13202. [Google Scholar] [CrossRef]
- Zishka, K.M.; Smith, P.J. The climatology of cyclones and anticyclones over North America and surrounding environs for January and July 1950–77. Mon. Weather Rev. 1980, 108, 387–401. [Google Scholar] [CrossRef]
- Key, J.R.; Chan, A.C.K. Multidecadal global and regional trends in 1000 mb and 500 mb cyclone frequencies. Geophys. Res. Lett. 1999, 26, 2053–2056. [Google Scholar] [CrossRef]
- Sanders, F.; Gyakum, J.R. Synoptic-dynamic climatology of the ”bomb”. Mon. Weather Rev. 1980, 108, 1589–1606. [Google Scholar] [CrossRef]
- Eichler, T.P.; Gaggini, N.; Pan, Z. Impacts of global warming on Northern Hemisphere winter storm tracks in the CMIP5 model suite. J. Geophys. Res. Atmos. 2013, 118, 3919–3932. [Google Scholar] [CrossRef]
- Gyakum, J.R. On the evolution of the QE II storm. Part II: Dynamic and thermodynamic structure. Mon. Weather Rev. 1983, 111, 1156–1173. [Google Scholar] [CrossRef]
- Lupo, A.R.; Smith, P.J.; Zwack, P. A diagnosis of the development of two extra-tropical cyclones. Mon. Weather Rev. 1992, 120, 1490–1523. [Google Scholar] [CrossRef]
- Petterssen, S. Weather Analysis and Forecasting, 2nd ed.; Mc Graw-Hill: New York, NY, USA, 1956; Volume I, p. 428. [Google Scholar]
- Haltiner, G.J.; Martin, F.L. Dynamical and Physical Meteorology; Mc Graw-Hill: New York, NY, USA, 1957; p. 470. [Google Scholar]
- Uccellini, L.W.; Petersen, R.A.; Brill, K.F.; Kocin, P.J.; Tuccillo, J.J. Synergistic interactions between an upper-level jet streak and diabatic processes that influence the development of a low-level jet and a secondary coastal cyclone. Mon. Weather Rev. 1987, 115, 2227–2261. [Google Scholar] [CrossRef]
- Reynolds, D.D.; Lupo, A.R.; Jensen, A.D.; Market, P.S. The Predictability of Northern Hemispheric Blocking Using an Ensemble Mean Forecast System. Proceedings 2017, 1, 87. [Google Scholar]
- Lin, S.C.; Smith, P.J. Diabatic heating and generation of available potential energy in a tornado-producing extratropical cyclone. Mon. Weather Rev. 1979, 107, 1169–1183. [Google Scholar] [CrossRef]
- Kuo, Y.H.; Reed, R.J.; Low-Nam, S. Effects of surface energy fluxes during the early development and rapid intensification stages of seven explosive cyclones in the western Atlantic. Mon. Weather Rev. 1991, 119, 457–476. [Google Scholar] [CrossRef]
- Lupo, A.R. Atmospheric blocking events: A review. Ann. N. Y. Acad. Sci. 2021, 1504, 5–24. [Google Scholar] [CrossRef]
- Krishnamurti, T.N. A diagnostic balance model for studies of weather systems of low and high latitudes, Rossby number less than 1. Mon. Weather Rev. 1968, 96, 197–207. [Google Scholar] [CrossRef]
- Lupo, A.R.; Heaven, B.; Matzen, J.; Rabinowitz, J.L. The Interannual and Interdecadal Variability in Tropical Cyclone Activity: A Decade of Changes in the Climatological Character. Reviewed Book; In Current Topics in Tropical Cyclone Research; Lupo, A.P., Ed.; Intech Publishers: Houston, TX, USA, 2020; Chapter 1; pp. 22, 158. [Google Scholar]
- Houze, R.A. Clouds in tropical cyclones. Mon. Weather Rev. 2010, 138, 293–344. [Google Scholar] [CrossRef]
- Emanuel, K. 100 years of progress in tropical cyclone research. Meteorol. Monogr. 2018, 59, 15.1–15.68. [Google Scholar] [CrossRef]
- Levina, G.V. On the path from the turbulent vortex dynamo theory to diagnosis of tropical cyclogenesis. Open J. Fluid Dyn. 2018, 8, 86–114. [Google Scholar] [CrossRef] [Green Version]
- Palmen, E. On the formation and structure of tropical cyclones. Geophysics 1948, 3, 26–38. [Google Scholar]
- Riehl, H. On the formation of typhoons. J. Meteorol. 1948, 5, 247–264. [Google Scholar] [CrossRef]
- Gray, W.M. Global view of the origin of tropical disturbances and storms. Mon. Weather Rev. 1968, 96, 669–700. [Google Scholar] [CrossRef]
- Shapiro, L.J.; Goldenberg, S.B. Atlantic sea surface temperatures and tropical cyclone formation. J. Clim. 1998, 11, 578–590. [Google Scholar] [CrossRef]
- Landsea, C.W.; Pielke, R.A., Jr.; Mestas-Nunez, A.M.; Knaff, J.A. Atlantic basin hurricanes: Indices of climatic changes. Clim. Change 1999, 42, 89–129. [Google Scholar] [CrossRef]
- DeMaria, M.; Knaff, J.A.; Connell, B.H. A Tropical Cyclone Genesis Parameter for the Tropical Atlantic. Weather. Forecast. 2001, 16, 219–233. [Google Scholar] [CrossRef]
- Velden, C.; Olander, T.L.; Zehr, R.M. Development of an Objective Scheme to Estimate Tropical Cyclone Intensity from Digital Geostationary Satellite Infrared Imagery. Weather. Forecast. 1998, 13, 172–186. [Google Scholar] [CrossRef]
- Tous, M.; Romero, R. Meteorological environments associated with medicane development. Int. J. Climatol. 2013, 33, 1–14. [Google Scholar] [CrossRef]
- Tous, M.; Romero, R.; Ramis, C. Surface heat fluxes influence on medicane trajectories and intensification. Atmos. Res. 2013, 123, 400–411. [Google Scholar] [CrossRef]
- Akhtar, N.; Brauch, J.; Dobler, A.; Beranger, K.; Ahrens, B. Medicanes in an ocean-atmosphere coupled regional climate model. Nat. Hazards Earth Syst. Sci. 2014, 14, 2189–2201. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, E.; Zick, C. A subsynoptic vortex over the Mediterranean with some resemblance to polar lows. Tellus A Dyn. Meteorol. Oceanogr. 1987, 39, 408–425. [Google Scholar] [CrossRef] [Green Version]
- Businger, S.; Reed, R. Cyclogenesis in cold air masses. Weather. Forecast. 1989, 4, 133–156. [Google Scholar] [CrossRef]
- Cavicchia, L.; von Storch, H.; Gualdi, S. A long-term climatology of medicanes. Clim. Dyn. 2013, 43, 1183–1195. [Google Scholar] [CrossRef]
- Efimov, V.; Stanichny, S.; Shokurov, M.V.; Iarovaia, D. Observations of a Quasi-Tropical Cyclone over the Black Sea. Russ. Meteorol. Hydrol. 2008, 33, 233–239. [Google Scholar] [CrossRef]
- Blaskvoic, T. Medistorm Falchion Forms in the Black Sea, Bringing Heavy Rains & Flood. Available online: https://watchers.news/2021/08/13/medistorm-falchion-black-sea-august2021/ (accessed on 8 October 2021).
- DeFluri, J. Black Sea Medicane or Not? Available online: https://www.stratumfive.com/industry/black-sea-medicane-or-not/ (accessed on 8 October 2021).
- EUMETSAT. Product Navigator. Available online: https://navigator.eumetsat.int/search?query=indian&filter=satellite__MSG&s=extended (accessed on 9 December 2021).
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef]
- National Oceanic and Atmospheric Administration Physical Sciences Laboratory NCEP/NCAR Reanalyses. Available online: https://www.psl.noaa.gov/data/gridded/data.ncep.reanalysis.html (accessed on 17 August 2022).
- University of Missouri Blocking Archive. 2021. Available online: http://weather.missouri.edu/gcc/ (accessed on 17 June 2021).
- ECMWF Reanalyses Version 5. Available online: https://cds.climate.copernicus.eu/cdsapp#!/home (accessed on 17 August 2022).
- Whitaker, D. 2014: Hurricanes and Sea Surface Temperature. Available online: https://ie.unc.edu/wp-content/uploads/sites/277/2014/12/Hurricanes-and-sea-surfacetemperature.pdf (accessed on 21 July 2022).
- Rabinowitz, J.L.; Lupo, A.R.; Market, P.S.; Guinan, P.E. An Investigation of Atmospheric Rivers Impacting Heavy Rainfall Events in the North-Central Mississippi River Valley. Int. J. Climatol. 2019, 39, 4091–4106. [Google Scholar] [CrossRef]
- Mahoney, K.; Jackson, D.L.; Neiman, P.; Hughes, M.; Darby, L.; Wick, G.; White, A.; Sukovich, E.; Cifelli, R. Understanding the role of atmospheric rivers in heavy precipitation in the Southeast United States. Mon. Weather Rev. 2016, 144, 1617–1632. [Google Scholar] [CrossRef]
- Miller, D.K.; Hotz, D.; Winton, J.; Stewart, L. Investigation of atmospheric rivers impacting the Pigeon River basin of the southern Appalachian Mountains. Weather. Forecast. 2018, 33, 283–299. [Google Scholar] [CrossRef]
- Debbage, N.; Miller, P.; Poore, S.; Morano, K.; Mote, T.; Sheppard, J.M. A climatology of atmospheric river interactions with the southeastern United States coastline. Int. J. Climatol. 2017, 37, 4077–4091. [Google Scholar] [CrossRef]
- American Meteorological Society. Glossary of Meteorology; American Meteorological Society: Boston, MA, USA, 2017; Available online: http://glossary.ametsoc.org/wiki/Atmospheric_river (accessed on 7 February 2019).
- Neiman, P.J.; Ralph, F.M.; Wick, G.A.; Lundquist, J.D.; Dettinger, M.D. Meteorological characteristics and overland precipitation aspects of atmospheric rivers affecting the west coast of North America based on eight years of SSM/I satellite observations. J. Hydrometeorol. 2008, 9, 22–47. [Google Scholar]
- Davis, C.A.; Emanuel, K.A. Potential vorticity diagnostics of cyclogenesis. Mon. Wea. Rev. 1991, 119, 1929–1953. [Google Scholar] [CrossRef]
- Bosart, L.F.; Velden, C.S.; Bracken, W.E.; Molinari, J.; Black, P.J. Environmental Influences on the Rapid Intensification of Hurricane Opal (1995) over the Gulf of Mexico. Mon. Weather Rev. 1995, 128, 322–352. [Google Scholar] [CrossRef]
- McTaggart-Cowan, R.; Bosart, L.F.; Davis, C.A.; Atallah, E.H.; Gyakum, J.R.; Emanuel, K.A. Analysis of Hurricane Catarina (2004). Mon. Weather Rev. 2006, 134, 3029–3053. [Google Scholar] [CrossRef]
- Filho, A.J.P.; Bernardes, A.P.; Simmonds, I.; Lima, R.S.; Vianna, M. New perspectives on the synoptic and mesoscale structure of Hurricane Catarina. Atmos. Res. 2010, 95, 157–171. [Google Scholar] [CrossRef]
- Zuki, M.Z.; Lupo, A.R. The interannual variability of tropical cyclone activity in the Southern South China Sea. J. Geophys. Res. 2008, 113, D06106. [Google Scholar] [CrossRef] [Green Version]
- Ermakov, D.M.; Sharkov, E.A.; Chernushich, A.P. Role of Tropospheric Latent Heat Advective Fluxes in the Intensification of Tropical Cyclones. Izv. Atmos. Ocean. Phys. 2019, 55, 1254–1265. [Google Scholar] [CrossRef]
- Sutil, U.A.; Pezzi, L.P.; Alves, R.C.M.; Nunes, A.B. Ocean-Atmosphere Interactions in an Extratropical Cyclone in the Southwest Atlantic. Anuário do Inst. Geociências—UFRJ 2019, 42, 525–535. [Google Scholar] [CrossRef]
Storm Name/Dates | Location | Strength | Mean IVT/Max IVT (kg m−1 s−1) |
---|---|---|---|
SS Falchion */10–14 Aug 2021 | Black Sea (45° N 37.5° E) | 1012 hPa/73 km h−1 | 422/513 |
SS Unnamed/25–29 Oct 2000 | West Atlantic (24° N 71° W) | 976 hPa/100 km h−1 | 775/1015 |
SS Nicole */9–12 Oct 2004 | West Atlantic (30° N 65° W) | 986 hPa/85 km h−1 | 801/890 |
TS Bret/28–30 June 2005 | Gulf of Mexico (20° N 95° W) | 1002 hPa/65 km h−1 | 578/745 |
Cat 5 Wilma/20–24 Oct 2005 | Gulf of Mexico (18° N 84° W) | 882 hPa/295 km h−1 | 1634/1855 |
TS Fay/18–22 Aug 2008 | West Atlantic (23° N 81° W) | 986 hPa/110 km h−1 | 1267/1645 |
Cat 4 Gustav/30 Aug–3 Sept 2008 | Gulf of Mexico (21° N 82° W) | 941 hPa/250 km h−1 | 1574/2120 |
TS Andrea/5–7 June 2013 | Gulf of Mexico (25° N 87° W) | 992 hPa/100 km h−1 | 1067/1185 |
Storm Name/Dates | Mean LHF/Max LHF (W m−2) |
---|---|
SS Falchion */10–14 Aug 2021 | 246/386 |
SS Unnamed/25–29 Oct 2000 | 399/530 |
SS Nicole */9–12 Oct 2004 | 426/510 |
TS Bret/28–30 June 2005 | 179/225 |
Cat 5 Wilma/20–24 Oct 2005 | 706/750 |
TS Fay/18–22 Aug 2008 | 321/360 |
Cat 4 Gustav/30 Aug–3 Sept 2008 | 391/565 |
TS Andrea/5–7 June 2013 | 240/260 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farr, M.B.; Gasch, J.V.; Travis, E.J.; Weaver, S.M.; Yavuz, V.; Semenova, I.G.; Panasiuk, O.; Lupo, A.R. An Analysis of the Synoptic Dynamic and Hydrologic Character of the Black Sea Cyclone Falchion. Meteorology 2022, 1, 495-512. https://doi.org/10.3390/meteorology1040031
Farr MB, Gasch JV, Travis EJ, Weaver SM, Yavuz V, Semenova IG, Panasiuk O, Lupo AR. An Analysis of the Synoptic Dynamic and Hydrologic Character of the Black Sea Cyclone Falchion. Meteorology. 2022; 1(4):495-512. https://doi.org/10.3390/meteorology1040031
Chicago/Turabian StyleFarr, Moses B., James V. Gasch, Evan J. Travis, Sarah M. Weaver, Veli Yavuz, Inna G. Semenova, Oleksandr Panasiuk, and Anthony R. Lupo. 2022. "An Analysis of the Synoptic Dynamic and Hydrologic Character of the Black Sea Cyclone Falchion" Meteorology 1, no. 4: 495-512. https://doi.org/10.3390/meteorology1040031
APA StyleFarr, M. B., Gasch, J. V., Travis, E. J., Weaver, S. M., Yavuz, V., Semenova, I. G., Panasiuk, O., & Lupo, A. R. (2022). An Analysis of the Synoptic Dynamic and Hydrologic Character of the Black Sea Cyclone Falchion. Meteorology, 1(4), 495-512. https://doi.org/10.3390/meteorology1040031