Credible Uncertainties for Natural Gas Properties Calculated from Normalised Natural Gas Composition Data
Abstract
:1. Introduction
2. Normalisation of Composition
2.1. Normalised and Non-Normalised Amount Fractions
2.2. Recovery Algorithm for the Covariances in a Normalised Composition
3. Results
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
# --------------------------------------------------------------------- # Non-normalised composition xdata.val = c(3.248,2.398,83.520,6.523,3.345) # (in cmol/mol) xdata.unc = c(0.021,0.018,0.209,0.044,0.113) # (in cmol/mol) normalise = function (x,kappa = 1.0) { x*kappa/sum(x) } # --------------------------------------------------------------------- # normalised composition xnorm.val = normalise(xdata.val,kappa = 100) # 3.279682 2.421391 84.334673 6.586627 3.377628 # --------------------------------------------------------------------- # uncertainty of normalised composition norm.sensmat = function(x,kappa = 1.0) { num = length(x) sum.x = sum(x) cvmat = matrix(nrow = num,ncol = num) for (i in 1:num) { for (j in 1:num) { cvmat[i,j] = -kappa * x[i]/sum.x^2 if (i == j) cvmat[i,j] = cvmat[i,j] + kappa/sum.x } } cvmat } # sensitivity matrix normalisation xnorm.sens = norm.sensmat(xdata.val,kappa = 100) # covariance matrix of the non-normalised composition xnorm.cvm = diag(xdata.unc^2) # calculation of the covariance matrix of the normalised composition xnorm.cvm = xnorm.sens %*% xnorm.cvm %*% t(xnorm.sens) # from covariance matrix to standard uncertainties ... xnorm.unc = sqrt(diag(xnorm.cvm)) # [1] 0.02202324 0.01870065 0.11095691 0.04444736 0.11049269 # --------------------------------------------------------------------- # reconstruction algorithm norm.recon = function(y,uy,kappa = 1.0) { b = uy^2 num = length(y) A = matrix(nrow = num,ncol = num) sol = numeric(num) for (i in 1:num) { for (j in 1:num) { if (i==j) {A[i,j] = 1.0-y[i]/kappa} else {A[i,j] = -y[i]/kappa} A[i,j] = A[i,j]^2 } } sol = qr.solve(A,b) sqrt(sol) # return standard uncertainties u(x[i]) } # reconstructed standard uncertainties non-normalised composition xdata.unc1 = norm.recon(xnorm.val,xnorm.unc,kappa = 100.0) 0.02120484 0.01817558 0.21103863 0.04442919 0.11410223 |
References
- ISO 15112; Natural Gas—Energy Determination. 2nd ed. International Organization for Standardization (ISO): Geneva, Switzerland, 2011.
- Ficco, G.; Dell’Isola, M.; Vigo, P.; Celenza, L. Uncertainty analysis of energy measurements in natural gas transmission networks. Flow Meas. Instrum. 2015, 42, 58–68. [Google Scholar] [CrossRef]
- OIML R 140 Measuring Systems for Gaseous Fuel; International Organization for Legal Metrology (OIML): Paris, France, 2007.
- ISO 6976-16; Natural Gas—Calculation of Calorific Values, Density, Relative Density and Wobbe Indices from Composition. International Organization for Standardization (ISO): Geneva, Switzerland, 2016.
- ISO 6976-95; Natural Gas—Calculation of Calorific Values, Density, Relative Density and Wobbe Index from Composition. International Organization for Standardization (ISO): Geneva, Switzerland, 1995.
- BIPM; IEC; IFCC; ILAC; ISO; IUPAC; IUPAP; OIML. Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement; JCGM 100:2008, GUM:1995 with Minor Corrections; BIPM: Sèvres, France, 2008. [Google Scholar]
- BIPM; IEC; IFCC; ILAC; ISO; IUPAC; IUPAP; OIML. Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement—Part 6: Developing and Using Measurement Models; JCGM GUM-6:2020; BIPM: Sèvres, France, 2020. [Google Scholar]
- Dell’Isola, M.; Ficco, G.; Moretti, L.; Jaworski, J.; Kułaga, P.; Kukulska–Zając, E. Impact of Hydrogen Injection on Natural Gas Measurement. Energies 2021, 14, 8461. [Google Scholar] [CrossRef]
- Vaccariello, E.; Trinchero, R.; Stievano, I.S.; Leone, P. A Statistical Assessment of Blending Hydrogen into Gas Networks. Energies 2021, 14, 5055. [Google Scholar] [CrossRef]
- Pellegrino, S.; Lanzini, A.; Leone, P. Greening the gas network—The need for modelling the distributed injection of alternative fuels. Renew. Sustain. Energy Rev. 2017, 70, 266–286. [Google Scholar] [CrossRef]
- Ingo, C.; Tuuf, J.; Björklund-Sänkiaho, M. Impact of Hydrogen on Natural Gas Compositions to Meet Engine Gas Quality Requirements. Energies 2022, 15, 7990. [Google Scholar] [CrossRef]
- Amez, I.; Castells, B.; Llamas, B.; Bolonio, D.; García-Martínez, M.J.; Lorenzo, J.L.; García-Torrent, J.; Ortega, M.F. Experimental Study of Biogas–Hydrogen Mixtures Combustion in Conventional Natural Gas Systems. Appl. Sci. 2021, 11, 6513. [Google Scholar] [CrossRef]
- Kunz, O.; Wagner, W. The GERG-2008 Wide-Range Equation of State for Natural Gases and Other Mixtures: An Expansion of GERG-2004. J. Chem. Eng. Data 2012, 57, 3032–3091. [Google Scholar] [CrossRef]
- ISO 20765-2; Natural Gas—Calculation of Thermodynamic Properties—Part 2: Single-Phase Properties (Gas, Liquid, and Dense Fluid) for Extended Ranges of Application. 1st ed. International Organization for Standardization (ISO): Geneva, Switzerland, 2008.
- ISO 12213-1; Natural Gas—Calculation of Compression Factor—Part 1: Introduction and Guidelines. 2nd ed. International Organization for Standardization (ISO): Geneva, Switzerland, 2006.
- ISO 12213-2; Natural Gas—Calculation of Compression Factor—Part 2: Calculation Using Molar-Composition Analysis. 2nd ed. International Organization for Standardization (ISO): Geneva, Switzerland, 2006.
- ISO 20765-1; Natural Gas—Calculation of Thermodynamic Properties—Part 1: Gas Phase Properties for Transmission and Distribution Applications. 1st ed. International Organization for Standardization (ISO): Geneva, Switzerland, 2008.
- BIPM; IEC; IFCC; ILAC; ISO; IUPAC; IUPAP; OIML. Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement—Supplement 2 to the “Guide to the Expression of Uncertainty in Measurement”—Extension to Any Number of Output Quantities; JCGM 102:2011; BIPM: Sèvres, France, 2011. [Google Scholar]
- Aitchison, J. The Statistical Analysis of Compositional Data (Monographs on Statistics and Applied Probability); Springer: Berlin/Heidelberg, Germany, 1986. [Google Scholar]
- Chayes, F.; Trochimczyk, J. An effect of closure on the structure of principal components. J. Int. Assoc. Math. 1978, 10, 323–333. [Google Scholar] [CrossRef]
- ISO 6142-1; Gas Analysis—Preparation of Calibration Gas Mixtures—Gravimetric Method for Class I Mixtures. 1st ed. International Organization for Standardization (ISO): Geneva, Switzerland, 2015.
- ISO 6142-2; Gas Analysis—Preparation of Calibration Gas Mixtures—Gravimetric Method for Class II Mixtures. 1st ed. International Organization for Standardization (ISO): Geneva, Switzerland, 2024.
- ISO 6974-1; Natural Gas—Determination of Composition with Defined Uncertainty by Gas Chromatography—Part 1: Guidelines for Tailored Analysis. 2nd ed. International Organization for Standardization (ISO): Geneva, Switzerland, 2012.
- ISO 6974-2; Natural Gas—Determination of Composition with Defined Uncertainty by Gas Chromatography—Part 2: Measuring-System Characteristics and Statistics for Processing of Data. 2nd ed. International Organization for Standardization (ISO): Geneva, Switzerland, 2012.
- ISO 10723; Natural Gas—Performance Evaluation for Analytical Systems. 2nd ed. International Organization for Standardization (ISO): Geneva, Switzerland, 2012.
- Cox, M.G.; van der Veen, A.M.H. Reporting measurement results. In Good Practice in Evaluating Measurement Uncertainty—Compendium of Examples, 1st ed.; van der Veen, A.M.H., Cox, M.G., Eds.; EURAMET: Braunschweig, Germany, 2021; pp. 45–54. [Google Scholar]
- van der Veen, A.M.H.; Hafner, K. Atomic weights in gas analysis. Metrologia 2014, 51, 80. [Google Scholar] [CrossRef]
- Milton, M.J.T.; Harris, P.M.; Brown, A.S.; Cowper, C.J. Normalization of natural gas composition data measured by gas chromatography. Meas. Sci. Technol. 2008, 20, 025101. [Google Scholar] [CrossRef]
- Golub, G.H.; Loan, C.F.V. Matrix Computations; Johns Hopkins University Press: Baltimore, MD, USA, 2013. [Google Scholar]
- Press, W.H.; Flannery, B.P.; Teukolsky, S.A.; Vetterling, W.T. Numerical Recipes in C: The Art of Scientific Computing, 2nd ed.; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024. [Google Scholar]
- Cox, M.G.; van der Veen, A.M.H. Understanding and treating correlated quantities in measurement uncertainty evaluation. In Good Practice in Evaluating Measurement Uncertainty—Compendium of Examples, 1st ed.; van der Veen, A.M.H., Cox, M.G., Eds.; EURAMET: Braunschweig, Germany, 2021; pp. 29–44. [Google Scholar]
Component | cmol mol−1 | cmol mol−1 | |
---|---|---|---|
Nitrogen | 3.248 | 0.021 | 0.65% |
Carbon dioxide | 2.398 | 0.018 | 0.75% |
Methane | 83.520 | 0.209 | 0.25% |
Ethane | 6.523 | 0.044 | 0.67% |
Propane | 3.345 | 0.113 | 3.38% |
Component | N2 | CO2 | CH4 | C2H6 | C3H8 |
---|---|---|---|---|---|
N2 | 1 | 0.0635 | −0.0703 | 0.0367 | −0.1543 |
CO2 | 0.0635 | 1 | −0.0605 | 0.0320 | −0.1341 |
CH4 | −0.0703 | −0.0605 | 1 | -0.2531 | −0.8782 |
C2H6 | 0.0367 | 0.0320 | −0.2531 | 1 | −0.1609 |
C3H8 | −0.1543 | −0.1341 | −0.8782 | −0.1609 | 1 |
With Correlations | Recovery | Without Correlations | ||||
---|---|---|---|---|---|---|
H | 929.8 | 1.5 | 929.8 | 1.5 | 929.8 | 2.7 |
18.984 | 0.030 | 18.984 | 0.030 | 18.984 | 0.055 | |
Z | 0.997448 | 0.000045 | 0.997448 | 0.000045 | 0.997448 | 0.000048 |
48.977 | 0.030 | 48.977 | 0.030 | 48.977 | 0.20 | |
39.423 | 0.065 | 39.423 | 0.065 | 39.423 | 0.117 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van der Veen, A.M.H. Credible Uncertainties for Natural Gas Properties Calculated from Normalised Natural Gas Composition Data. Methane 2025, 4, 1. https://doi.org/10.3390/methane4010001
van der Veen AMH. Credible Uncertainties for Natural Gas Properties Calculated from Normalised Natural Gas Composition Data. Methane. 2025; 4(1):1. https://doi.org/10.3390/methane4010001
Chicago/Turabian Stylevan der Veen, Adriaan M. H. 2025. "Credible Uncertainties for Natural Gas Properties Calculated from Normalised Natural Gas Composition Data" Methane 4, no. 1: 1. https://doi.org/10.3390/methane4010001
APA Stylevan der Veen, A. M. H. (2025). Credible Uncertainties for Natural Gas Properties Calculated from Normalised Natural Gas Composition Data. Methane, 4(1), 1. https://doi.org/10.3390/methane4010001