RisingTides: An Analytic Modeling Code of Tidal Effects in Binary Neutron Star Mergers
Abstract
:1. Introduction
2. Implementation of the Baseline Model
2.1. The Baseline Inspiral Model
2.2. The Baseline Merger Model
2.3. The Complete Baseline Model
3. Implementation of the Tidal Model
3.1. The BNS Tidal Phase
3.2. The BNS Tidal Amplitude
4. Modeling the BNS Merger
4.1. New Fit for the Tidal Phase
4.2. New Fit for the Tidal Amplitude
4.3. A Toy Model for the Complete Analytic BNS Waveforms
5. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GW | Gravitational Wave |
BNS | Binary Neutron Star |
BBH | Binary Black Hole |
pN | post-Newtonian |
EOB | Effective-One-Body |
NR | numerical relativity |
BoB | Backwards-one-Body |
SXS | Simulating eXtreme Spacetimes |
ISCO | innermost stable circular orbit |
LR | light-ring |
References
- Abbott, B.P.; Abbott, R.; Abbott, T.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett. 2017, 119, 161101. [Google Scholar] [CrossRef] [PubMed]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB170817A. Astrophys. J. Lett. 2017, 848, L13. [Google Scholar] [CrossRef]
- Arcavi, I.; Hosseinzadeh, G.; Howell, D.A.; McCully, C.; Poznanski, D.; Kasen, D.; Barnes, J.; Zaltzman, M.; Vasylyev, S.; Maoz, D.; et al. Optical emission from a kilonova following a gravitational-wave-detected neutron-star merger. Nature 2017, 551, 64–66. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. GW170817: Measurements of Neutron Star Radii and Equation of State. Phys. Rev. Lett. 2019, 121, 161101. [Google Scholar] [CrossRef] [PubMed]
- Malik, T.; Alam, N.; Fortin, M.; Providência, C.; Agrawal, B.K.; Jha, T.K.; Kumar, B.; Patra, S.K. GW170817: Constraining the nuclear matter equation of state from the neutron star tidal deformability. Phys. Rev. C 2018, 98, 035804. [Google Scholar] [CrossRef]
- Bhat, S.A.; Bandyopadhyay, D. Neutron star equation of state and GW170817. J. Phys. G Nucl. Part. Phys. 2019, 46, 014003. [Google Scholar] [CrossRef]
- Abdalla, H.; Adam, R.; Aharonian, F.; Benkhali, F.A.; Angüner, E.O.; Arakawa, M.; Arcaro, C.; Armand, C.; Armstrong, T.; Ashkar, H.; et al. Probing the Magnetic Field in the GW170817 Outflow Using H.E.S.S. Observations. Astrophys. J. Lett. 2020, 894, 16. [Google Scholar] [CrossRef]
- Wu, Y.; MacFadyen, A. Constraining the Outflow Structure of the Binary Neutron Star Merger Event GW170817/GRB170817A with a Markov Chain Monte Carlo Analysis. Astrophys. J. 2018, 869, 55. [Google Scholar] [CrossRef]
- Nitz, A.H.; Capano, C.D.; Kumar, S.; Wang, Y.F.; Kastha, S.; Schäfer, M.; Dhurkunde, R.; Cabero, M. 3-OGC: Catalog of Gravitational Waves from Compact-binary Mergers. Astrophys. J. 2021, 922, 76. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; et al. GW190425: Observation of a Compact Binary Coalescence with Total Mass ∼3.4 M⊙. Astrophys. J. Lett. 2020, 892, L3. [Google Scholar] [CrossRef]
- Safarzadeh, M.; Ramirez-Ruiz, E.; Berger, E. Does GW190425 Require an Alternative Formation Pathway than a Fast-merging Channel? Astrophys. J. 2020, 900, 13. [Google Scholar] [CrossRef]
- Ciolfi, R. Binary neutron star mergers after GW170817. Front. Astron. Space Sci. 2020, 7, 27. [Google Scholar] [CrossRef]
- Lazzati, D.; Perna, R.; Ciolfi, R.; Giacomazzo, B.; López-Cámara, D.; Morsony, B. Two Steps Forward and One Step Sideways: The Propagation of Relativistic Jets in Realistic Binary Neutron Star Merger Ejecta. Astrophys. J. Lett. 2021, 918, L6. [Google Scholar] [CrossRef]
- Hall, E.D.; Evans, M. Metrics for next-generation gravitational-wave detectors. Class. Quantum Gravity 2019, 36, 225002. [Google Scholar] [CrossRef]
- Reitze, D.; Adhikari, R.X.; Ballmer, S.; Barish, B.; Barsotti, L.; Billingsley, G.; Brown, D.A.; Chen, Y.; Coyne, D.; Eisenstein, R.; et al. Cosmic Explorer: The U.S. Contribution to Gravitational-Wave Astronomy beyond LIGO. Bull. Am. Astron. Soc. 2019, 51, 035. [Google Scholar]
- Maggiore, M.; Van Den Broeck, C.; Bartolo, N.; Belgacem, E.; Bertacca, D.; Bizouard, M.A.; Branchesi, M.; Clesse, S.; Foffa, S.; García-Bellido, J.; et al. Science Case for the Einstein Telescope. J. Cosmol. Astropart. Phys. 2020, 03, 050. [Google Scholar] [CrossRef]
- Barausse, E.; Berti, E.; Hertog, T.; Hughes, S.A.; Jetzer, P.; Pani, P.; Sotiriou, T.P.; Tamanini, N.; Witek, H.; Yagi, K.; et al. Prospects for Fundamental Physics with LISA. Gen. Rel. Grav. 2020, 52, 81. [Google Scholar] [CrossRef]
- Kawamura, S.; Ando, M.; Seto, N.; Sato, S.; Musha, M.; Kawano, I.; Yokoyama, J.I.; Tanaka, T.; Ioka, K.; Akutsu, T.; et al. Current status of space gravitational wave antenna DECIGO and B-DECIGO. Prog. Theor. Exp. Phys. 2021, 2021, 05A105. [Google Scholar] [CrossRef]
- Luo, J.; Chen, L.S.; Duan, H.Z.; Gong, Y.G.; Hu, S.; Ji, J.; Liu, Q.; Mei, J.; Milyukov, V.; Sazhin, M.; et al. TianQin: A space-borne gravitational wave detector. Class. Quantum Gravity 2016, 33, 035010. [Google Scholar] [CrossRef]
- Vines, J.E.; Flanagan, E.E. First-post-Newtonian quadrupole tidal interactions in binary systems. Phys. Rev. D 2013, 88, 024046. [Google Scholar] [CrossRef]
- Bernuzzi, S.; Nagar, A.; Thierfelder, M.; Brügmann, B. Tidal effects in binary neutron star coalescence. Phys. Rev. D 2012, 86, 044030. [Google Scholar] [CrossRef]
- Bernuzzi, S.; Nagar, A.; Dietrich, T.; Damour, T. Modeling the Dynamics of Tidally Interacting Binary Neutron Stars up to the Merger. Phys. Rev. Lett. 2015, 114, 161103. [Google Scholar] [CrossRef] [PubMed]
- Akcay, S.; Bernuzzi, S.; Messina, F.; Nagar, A.; Ortiz, N.; Rettegno, P. Effective-one-body multipolar waveform for tidally interacting binary neutron stars up to merger. Phys. Rev. D 2019, 99, 044051. [Google Scholar] [CrossRef]
- Buonanno, A.; Damour, T. Effective one-body approach to general relativistic two-body dynamics. Phys. Rev. D 1999, 59, 084006. [Google Scholar] [CrossRef]
- Damour, T.; Nagar, A. Effective one body description of tidal effects in inspiralling compact binaries. Phys. Rev. D 2009, 81, 084016. [Google Scholar] [CrossRef]
- Hinderer, T.; Taracchini, A.; Foucart, F.; Buonanno, A.; Steinhoff, J.; Duez, M.; Kidder, L.E.; Pfeiffer, H.P.; Scheel, M.A.; Szilagyi, B.; et al. Effects of Neutron-Star Dynamic Tides on Gravitational Waveforms within the Effective-One-Body Approach. Phys. Rev. Lett. 2016, 116, 181101. [Google Scholar] [CrossRef] [PubMed]
- Nagar, A.; Bernuzzi, S.; Del Pozzo, W.; Riemenschneider, G.; Akcay, S.; Carullo, G.; Fleig, P.; Babak, S.; Tsang, K.W.; Colleoni, M.; et al. Time-domain effective-one-body gravitational waveforms for coalescing compact binaries with nonprecessing spins, tides, and self-spin effects. Phys. Rev. D 2018, 98, 104052. [Google Scholar] [CrossRef]
- Favata, M. Systematic Parameter Errors in Inspiraling Neutron Star Binaries. Phys. Rev. Lett. 2014, 112, 101101. [Google Scholar] [CrossRef]
- Dietrich, T.; Hinderer, T. Comprehensive comparison of numerical relativity and effective-one-body results to inform improvements in waveform models for binary neutron star systems. Phys. Rev. D 2017, 95, 124006. [Google Scholar] [CrossRef]
- Gamba, R.; Breschi, M.; Bernuzzi, S.; Agathos, M.; Nagar, A. Waveform systematics in the gravitational-wave inference of tidal parameters and equation of state from binary neutron-star signals. Phys. Rev. D 2021, 103, 124015. [Google Scholar] [CrossRef]
- Dietrich, T.; Bernuzzi, S.; Tichy, W. Closed-form tidal approximants for binary neutron star gravitational waveforms constructed from high-resolution numerical relativity simulations. Phys. Rev. D 2017, 96, 121501. [Google Scholar] [CrossRef]
- Kawaguchi, K.; Kiuchi, K.; Kyutoku, K.; Sekiguchi, Y.; Shibata, M.; Taniguchi, K. Frequency-domain gravitational waveform models for inspiraling binary neutron stars. Phys. Rev. D 2018, 97, 044044. [Google Scholar] [CrossRef]
- Dietrich, T.; Khan, S.; Dudi, R.; Kapadia, S.J.; Kumar, P.; Nagar, A.; Ohme, F.; Pannarale, F.; Samajdar, A.; Bernuzzi, S.; et al. Matter imprints in waveform models for neutron star binaries: Tidal and self-spin effects. Phys. Rev. D 2019, 99, 024029. [Google Scholar] [CrossRef]
- Dietrich, T.; Samajdar, A.; Khan, S.; Johnson-McDaniel, N.K.; Dudi, R.; Tichy, W. Improving the NRTidal model for binary neutron star systems. Phys. Rev. D 2019, 100, 044003. [Google Scholar] [CrossRef]
- Narikawa, T.; Uchikata, N.; Kawaguchi, K.; Kiuchi, K.; Kyutoku, K.; Shibata, M.; Tagoshi, H. Reanalysis of the binary neutron star mergers GW170817 and GW190425 using numerical-relativity calibrated waveform models. Phys. Rev. Res. 2020, 2, 043039. [Google Scholar] [CrossRef]
- Narikawa, T.; Uchikata, N. Follow-up analyses of the binary-neutron-star signals GW170817 and GW190425 by using post-Newtonian waveform models. Phys. Rev. D 2022, 106, 103006. [Google Scholar] [CrossRef]
- Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, N.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; Agarwal, D.; et al. GWTC-2.1: Deep Extended Catalog of Compact Binary Coalescences Observed by LIGO and Virgo During the First Half of the Third Observing Run. Phys. Rev. D 2024, 109, 022001. [Google Scholar] [CrossRef]
- Puecher, A.; Dietrich, T.; Tsang, K.W.; Kalaghatgi, C.; Roy, S.; Setyawati, Y.; Van Den Broeck, C. Unraveling information about supranuclear-dense matter from the complete binary neutron star coalescence process using future gravitational-wave detector networks. Phys. Rev. D 2023, 107, 124009. [Google Scholar] [CrossRef]
- LIGO Scientific Collaboration. LALSuite: LIGO Scientific Collaboration Algorithm Library Suite. 2020. Available online: https://ui.adsabs.harvard.edu/abs/2020ascl.soft12021L/abstract (accessed on 20 June 2024).
- Buskirk, D.; Babiuc Hamilton, M.C. A complete analytic gravitational wave model for undergraduates. Eur. J. Phys. 2019, 40, 025603. [Google Scholar] [CrossRef]
- Buskirk, D.; Babiuc Hamilton, M.C. Eccentric pairs: Analytic gravitational waves from binary black holes in elliptic orbits. Int. J. Mod. Phys. D 2023, 32, 2250138. [Google Scholar] [CrossRef]
- Huerta, E.A.; Kumar, P.; Agarwal, B.; George, D.; Schive, H.Y.; Pfeiffer, H.P.; Haas, R.; Ren, W.; Chu, T.; Boyle, M.; et al. Complete waveform model for compact binaries on eccentric orbits. Phys. Rev. D 2017, 95, 024038. [Google Scholar] [CrossRef]
- McWilliams, S.T. Analytical Black-Hole Binary Merger Waveforms. Phys. Rev. Lett. 2019, 122, 191102. [Google Scholar] [CrossRef] [PubMed]
- Boyle, M.; Hemberger, D.; Iozzo, D.A.B.; Lovelace, G.; Ossokine, S.; Pfeiffer, H.P.; Scheel, M.A.; Stein, L.C.; Woodford, C.J.; Zimmerman, A.B.; et al. The SXS collaboration catalog of binary black hole simulations. Class. Quantum Gravity 2019, 36, 195006. [Google Scholar] [CrossRef]
- Foucart, F.; Duez, M.D.; Hinderer, T.; Caro, J.; Williamson, A.R.; Boyle, M.; Buonanno, A.; Haas, R.; Hemberger, D.A.; Kidder, L.E.; et al. Gravitational waveforms from SpEC simulations: Neutron star-neutron star and low-mass black hole-neutron star binaries. Phys. Rev. D 2019, 99, 044008. [Google Scholar] [CrossRef]
- Blanchet, L. Post-Newtonian Theory and the Two-Body Problem. arXiv 2009, arXiv:0907.3596. [Google Scholar]
- Will, C.M. Inaugural Article: On the unreasonable effectiveness of the post-Newtonian approximation in gravitational physics. Proc. Natl. Acad. Sci. USA 2011, 108, 5938–5945. [Google Scholar] [CrossRef] [PubMed]
- Blanchet, L. Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries. Living Rev. Relativ. 2014, 17, 2. [Google Scholar] [CrossRef] [PubMed]
- Blanchet, L. Analyzing gravitational waves with general relativity. C. R.—Phys. 2019, 20, 507–520. [Google Scholar] [CrossRef]
- Blackman, J.; Field, S.E.; Scheel, M.A.; Galley, C.R.; Ott, C.D.; Boyle, M.; Kidder, L.E.; Pfeiffer, H.P.; Szilágyi, B. Numerical relativity waveform surrogate model for generically precessing binary black hole mergers. Phys. Rev. D 2017, 96, 024058. [Google Scholar] [CrossRef]
- Berti, E.; Cardoso, V.; Gonzalez, J.A.; Sperhake, U.; Hannam, M.; Husa, S.; Brügmann, B. Inspiral, merger, and ringdown of unequal mass black hole binaries: A multipolar analysis. Phys. Rev. D 2007, 76, 064034. [Google Scholar] [CrossRef]
- Khanna, G.; Price, R.H. Black hole ringing, quasinormal modes, and light rings. Phys. Rev. D 2017, 95, 081501. [Google Scholar] [CrossRef]
- Bambi, C. Black Holes: A Laboratory for Testing Strong Gravity; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar] [CrossRef]
- Buonanno, A.; Damour, T. Transition from inspiral to plunge in binary black hole coalescences. Phys. Rev. D 2000, 62, 064015. [Google Scholar] [CrossRef]
- Berti, E.; Cardoso, V.; Starinets, A. TOPICAL REVIEW: Quasinormal modes of black holes and black branes. Class. Quantum Gravity 2009, 26, 163001. [Google Scholar] [CrossRef]
- Berti, E.; Cardoso, V.; Will, C. Gravitational-wave spectroscopy of massive black holes with the space interferometer LISA. Phys. Rev. D 2006, 73, 064030. [Google Scholar] [CrossRef]
- Rezzolla, L.; Diener, P.; Dorband, E.N.; Pollney, D.; Reisswig, C.; Schnetter, E.; Seiler, J. The Final Spin from the Coalescence of Aligned-Spin Black Hole Binaries. Astrophys. J. Lett. 2008, 674, L29. [Google Scholar] [CrossRef]
- Barausse, E.; Rezzolla, L. Predicting the Direction of the Final Spin from the Coalescence of Two Black Holes. Astrophys. J. Lett. 2009, 704, L40–L44. [Google Scholar] [CrossRef]
- Miller, J.M.; Miller, M.C.; Reynolds, C.S. The Angular Momenta of Neutron Stars and Black Holes as a Window on Supernovae. Astrophys. J. Lett. 2011, 731, L5. [Google Scholar] [CrossRef]
- Lousto, C.O.; Zlochower, Y. Black hole binary remnant mass and spin: A new phenomenological formula. Phys. Rev. D 2014, 89, 104052. [Google Scholar] [CrossRef]
- Shibata, M.; Hotokezaka, K. Merger and Mass Ejection of Neutron Star Binaries. Annu. Rev. Nucl. Part. Sci. 2019, 69, 41–64. [Google Scholar] [CrossRef]
- Buskirk, D.; Babiuc Hamilton, M.C. Merging black holes: Assessing the performance of two analytic gravitational waves models. J. Cosmol. Astropart. Phys. 2023, 2023, 005. [Google Scholar] [CrossRef]
- McNeil Forbes, M.; Bose, S.; Reddy, S.; Zhou, D.; Mukherjee, A.; De, S. Constraining the Neutron-Matter Equation of State with Gravitational Waves. Phys. Rev. D 2019, 100, 083010. [Google Scholar] [CrossRef]
- Miller, M.C.; Chirenti, C.; Lamb, F.K. Constraining the Equation of State of High-density Cold Matter Using Nuclear and Astronomical Measurements. Astrophys. J. 2019, 888, 12. [Google Scholar] [CrossRef]
- Flanagan, É.; Hinderer, T. Constraining neutron-star tidal Love numbers with gravitational-wave detectors. Phys. Rev. D 2008, 77, 021502. [Google Scholar] [CrossRef]
- Damour, T.; Nagar, A.; Villain, L. Measurability of the tidal polarizability of neutron stars in late-inspiral gravitational-wave signals. Phys. Rev. D 2012, 82, 123007. [Google Scholar] [CrossRef]
- Hinderer, T. Tidal Love Numbers of Neutron Stars. Astrophys. J. 2008, 677, 1216–1220. [Google Scholar] [CrossRef]
- Zhao, T.; Lattimer, J.M. Tidal deformabilities and neutron star mergers. Phys. Rev. D 2018, 98, 063020. [Google Scholar] [CrossRef]
- The LIGO Scientific Collaboration and the Virgo Collaboration. Properties of the Binary Neutron Star Merger GW170817. Phys. Rev. X 2019, 9, 011001. [Google Scholar]
- Abac, A.; Dietrich, T.; Buonanno, A.; Steinhoff, J.; Ujevic, M. New and robust gravitational-waveform model for high-mass-ratio binary neutron star systems with dynamical tidal effects. Phys. Rev. D 2024, 109, 024062. [Google Scholar] [CrossRef]
- Read, J.S.; Lackey, B.; Owen, B.; Friedman, J. Constraints on a phenomenologically parametrized neutron-star equation of state. Phys. Rev. D 2009, 79, 124032. [Google Scholar] [CrossRef]
- Chatziioannou, K. Neutron-star tidal deformability and equation-of-state constraints. Gen. Relativ. Gravit. 2020, 52, 109. [Google Scholar] [CrossRef]
- Bernuzzi, S.; Nagar, A.; Balmelli, S.; Dietrich, T.; Ujevic, M. Quasiuniversal Properties of Neutron Star Mergers. Phys. Rev. Lett. 2014, 112, 201101. [Google Scholar] [CrossRef]
- Samajdar, A.; Dietrich, T. Waveform systematics for binary neutron star gravitational wave signals: Effects of the point-particle baseline and tidal descriptions. Phys. Rev. D 2018, 98, 124030. [Google Scholar] [CrossRef]
Coefficient | Original Fit 1 | New Fit |
---|---|---|
13,772.45 | ||
Coefficient | Original Fit 1 | New Fit |
---|---|---|
d | ||
p | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
O’Dell, A.; Hamilton, M.C.B. RisingTides: An Analytic Modeling Code of Tidal Effects in Binary Neutron Star Mergers. Astronomy 2024, 3, 167-188. https://doi.org/10.3390/astronomy3030011
O’Dell A, Hamilton MCB. RisingTides: An Analytic Modeling Code of Tidal Effects in Binary Neutron Star Mergers. Astronomy. 2024; 3(3):167-188. https://doi.org/10.3390/astronomy3030011
Chicago/Turabian StyleO’Dell, Alexander, and Maria C. Babiuc Hamilton. 2024. "RisingTides: An Analytic Modeling Code of Tidal Effects in Binary Neutron Star Mergers" Astronomy 3, no. 3: 167-188. https://doi.org/10.3390/astronomy3030011
APA StyleO’Dell, A., & Hamilton, M. C. B. (2024). RisingTides: An Analytic Modeling Code of Tidal Effects in Binary Neutron Star Mergers. Astronomy, 3(3), 167-188. https://doi.org/10.3390/astronomy3030011