Beyond mirkwood: Enhancing SED Modeling with Conformal Predictions
Abstract
:1. Introduction
2. Background
3. Data
4. Methodology
4.1. Data Preprocessing
4.2. Model Selection and Flexibility
4.3. CatBoost as the Base Predictor
4.4. Incorporating Conformalized Quantile Regression
4.5. Training and Validation
5. Comparative Analysis and Results
5.1. Comparative Analysis Methodology
5.2. Performance Metrics
5.3. Results
5.4. Discussion
6. Conclusions and Future Work
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
1 | https://github.com/scikit-learn-contrib/MAPIE (accessed on 10 January 2024). |
References
- Gilda, S.; Lower, S.; Narayanan, D. MIRKWOOD: Fast and accurate SED modeling using machine learning. Astrophys. J. 2021, 916, 43. [Google Scholar] [CrossRef]
- Gilda, S.; Lower, S.; Narayanan, D. MIRKWOOD: SED Modeling Using Machine Learning; Astrophysics Source Code Library, Record ascl:2102.017. 2021. Available online: https://ui.adsabs.harvard.edu/abs/2021ascl.soft02017G/abstract (accessed on 2 January 2024).
- Gilda, S.; Lower, S.; Narayanan, D. SED Analysis using Machine Learning Algorithms. Am. Astron. Soc. Meet. Abstr. 2021, 53, 119.03. [Google Scholar]
- Narayanan, D.; Gilda, S.; Lower, S. SED Fitting in the Modern Era: Fast and Accurate Machine-Learning Assisted Software. HST Proposal. Cycle 29, ID. #16626. 2021. Available online: https://archive.stsci.edu/proposal_search.php?id=16626&mission=hst (accessed on 2 January 2024).
- Acquaviva, V.; Raichoor, A.; Gawiser, E. Simultaneous estimation of photometric redshifts and sed parameters: Improved techniques and a realistic error budget. Astrophys. J. 2015, 804, 8. [Google Scholar] [CrossRef]
- Simha, V.; Weinberg, D.H.; Conroy, C.; Dave, R.; Fardal, M.; Katz, N.; Oppenheimer, B.D. Parametrising Star Formation Histories. arXiv 2014, arXiv:1404.0402. [Google Scholar]
- Gilda, S.; de Mathelin, A.; Bellstedt, S.; Richard, G. Unsupervised Domain Adaptation for Constraining Star Formation Histories. arXiv 2021, arXiv:2112.14072. [Google Scholar] [CrossRef]
- Chu, J.; Tang, H. Galaxy stellar and total mass estimation using machine learning. arXiv 2023, arXiv:2311.10351. [Google Scholar] [CrossRef]
- Gilda, S. deep-REMAP: Parameterization of Stellar Spectra Using Regularized Multi-Task Learning. arXiv 2023, arXiv:2311.03738. [Google Scholar] [CrossRef]
- Gilda, S.; Ge, J.; MARVELS. Parameterization of MARVELS Spectra Using Deep Learning. Am. Astron. Soc. Meet. Abstr. 2018, 231, 349.02. [Google Scholar]
- Gilda, S.; Draper, S.C.; Fabbro, S.; Mahoney, W.; Prunet, S.; Withington, K.; Wilson, M.; Ting, Y.S.; Sheinis, A. Uncertainty-aware learning for improvements in image quality of the Canada–France–Hawaii Telescope. Mon. Not. R. Astron. Soc. 2021, 510, 870–902. [Google Scholar] [CrossRef]
- Gilda, S.; Ting, Y.S.; Withington, K.; Wilson, M.; Prunet, S.; Mahoney, W.; Fabbro, S.; Draper, S.C.; Sheinis, A. Astronomical Image Quality Prediction based on Environmental and Telescope Operating Conditions. arXiv 2020, arXiv:2011.03132. [Google Scholar] [CrossRef]
- Gilda, S. Feature Selection for Better Spectral Characterization or: How I Learned to Start Worrying and Love Ensembles. Astron. Data Anal. Softw. Syst. XXVIII 2019, 523, 67. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Romano, Y.; Patterson, E.; Candes, E. Conformalized quantile regression. Adv. Neural Inf. Process. Syst. 2019, 32. [Google Scholar] [CrossRef]
- Walcher, J.; Groves, B.; Budavári, T.; Dale, D. Fitting the integrated spectral energy distributions of galaxies. Astrophys. Space Sci. 2011, 331, 1–51. [Google Scholar] [CrossRef]
- Conroy, C. Modeling the panchromatic spectral energy distributions of galaxies. Annu. Rev. Astron. Astrophys. 2013, 51, 393–455. [Google Scholar] [CrossRef]
- Dorogush, A.V.; Ershov, V.; Gulin, A. CatBoost: Gradient boosting with categorical features support. arXiv 2018, arXiv:1810.11363. [Google Scholar]
- Shafer, G.; Vovk, V. A Tutorial on Conformal Prediction. J. Mach. Learn. Res. 2008, 9, 371–421. [Google Scholar]
- Davé, R.; Anglés-Alcázar, D.; Narayanan, D.; Li, Q.; Rafieferantsoa, M.H.; Appleby, S. SIMBA: Cosmological simulations with black hole growth and feedback. Mon. Not. R. Astron. Soc. 2019, 486, 2827–2849. [Google Scholar] [CrossRef]
- Schaye, J.; Crain, R.A.; Bower, R.G.; Furlong, M.; Schaller, M.; Theuns, T.; Dalla Vecchia, C.; Frenk, C.S.; McCarthy, I.G.; Helly, J.C.; et al. The EAGLE project: Simulating the evolution and assembly of galaxies and their environments. Mon. Not. R. Astron. Soc. 2015, 446, 521–554. [Google Scholar] [CrossRef]
- Schaller, M.; Dalla Vecchia, C.; Schaye, J.; Bower, R.G.; Theuns, T.; Crain, R.A.; Furlong, M.; McCarthy, I.G. The EAGLE simulations of galaxy formation: The importance of the hydrodynamics scheme. Mon. Not. R. Astron. Soc. 2015, 454, 2277–2291. [Google Scholar] [CrossRef]
- McAlpine, S.; Helly, J.C.; Schaller, M.; Trayford, J.W.; Qu, Y.; Furlong, M.; Bower, R.G.; Crain, R.A.; Schaye, J.; Theuns, T.; et al. The EAGLE simulations of galaxy formation: Public release of halo and galaxy catalogues. Astron. Comput. 2016, 15, 72–89. [Google Scholar] [CrossRef]
- Vogelsberger, M.; Genel, S.; Springel, V.; Torrey, P.; Sijacki, D.; Xu, D.; Snyder, G.; Nelson, D.; Hernquist, L. Introducing the Illustris Project: Simulating the coevolution of dark and visible matter in the Universe. Mon. Not. R. Astron. Soc. 2014, 444, 1518–1547. [Google Scholar] [CrossRef]
- Schölkopf, B.; Burges, C.J.; Smola, A.J. (Eds.) Advances in Kernel Methods: Support Vector Learning; MIT Press: Cambridge, MA, USA, 1999. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Rasmussen, C.E.; Williams, C.K.I. Gaussian processes for machine learning. In Adaptive Computation and Machine Learning; MIT Press: Cambridge, MA, USA, 2006; pp. 1–248. [Google Scholar]
- Johnson, B.D.; Leja, J.L.; Conroy, C.; Speagle, J.S. Prospector: Stellar Population Inference from Spectra and SEDs; Astrophysics Source Code Library, Record ascl:1905.025. 2019. Available online: https://ascl.net/1905.025 (accessed on 2 January 2024).
Model | NRMSE (↓) | NMAE (↓) | NBE (↓) | ACE (↓) | IS (↓) | |
---|---|---|---|---|---|---|
This paper | 0.009 | 0.074 | −0.031 | −0.051 | 0.001 | |
Mass | mirkwood | 0.155 | 0.115 | −0.041 | −0.066 | 0.001 |
Prospector | 1.002 | 1.117 | −0.479 | −0.482 | 0.033 | |
This paper | 0.412 | 0.298 | −0.157 | −0.041 | 0.001 | |
Dust Mass | mirkwood | 0.475 | 0.336 | −0.215 | −0.076 | 0.001 |
Prospector | 1.263 | 1.212 | −0.679 | nan | nan | |
This paper | 0.044 | 0.048 | −0.009 | −0.053 | 0.016 | |
Metallicity | mirkwood | 0.056 | 0.052 | −0.010 | −0.063 | 0.032 |
Prospector | 0.547 | 0.487 | −0.229 | 0.036 | 0.302 | |
This paper | 0.223 | 0.147 | −0.047 | 0.014 | 0.004 | |
SFR | mirkwood | 0.277 | 0.215 | −0.078 | 0.035 | 0.006 |
Prospector | 1.988 | 2.911 | 1.437 | −0.547 | 0.200 |
Model | NRMSE (↓) | NMAE (↓) | NBE (↓) | ACE (↓) | IS (↓) | |
---|---|---|---|---|---|---|
This paper | 0.092 | 0.071 | −0.026 | −0.018 | 0.001 | |
Mass | mirkwood | 0.165 | 0.118 | −0.035 | −0.021 | 0.001 |
Prospector | 1.000 | 1.088 | −0.518 | −0.502 | 0.004 | |
This paper | 0.391 | 0.254 | −0.143 | 0.012 | 0.001 | |
Dust Mass | mirkwood | 0.456 | 0.332 | −0.209 | −0.033 | 0.001 |
Prospector | 0.996 | 0.998 | −0.905 | nan | nan | |
This paper | 0.037 | 0.049 | 0.007 | 0.021 | 0.023 | |
Metallicity | mirkwood | 0.058 | 0.055 | −0.010 | −0.032 | 0.036 |
Prospector | 0.534 | 0.464 | −0.275 | −0.041 | 0.295 | |
This paper | 0.274 | 0.114 | −0.070 | 0.027 | 0.001 | |
SFR | mirkwood | 0.329 | 0.226 | −0.090 | 0.048 | 0.001 |
Prospector | 0.910 | 0.992 | −0.686 | −0.564 | 1.937 |
Model | NRMSE (↓) | NMAE (↓) | NBE (↓) | ACE (↓) | IS (↓) | |
---|---|---|---|---|---|---|
This paper | 0.121 | 0.062 | −0.031 | −0.001 | 0.001 | |
Mass | mirkwood | 0.198 | 0.123 | −0.042 | −0.002 | 0.001 |
Prospector | 1.003 | 1.091 | −0.528 | −0.497 | 0.005 | |
This paper | 0.315 | 0.224 | −0.154 | 0.002 | 0.001 | |
Dust Mass | mirkwood | 0.480 | 0.339 | −0.219 | 0.003 | 0.001 |
Prospector | 0.996 | 0.998 | −0.905 | nan | nan | |
This paper | 0.049 | 0.048 | −0.005 | −0.013 | 0.034 | |
Metallicity | mirkwood | 0.062 | 0.060 | −0.011 | −0.024 | 0.041 |
Prospector | 0.544 | 0.478 | −0.297 | 0.046 | 0.301 | |
This paper | 0.189 | 0.171 | −0.043 | 0.061 | 0.001 | |
SFR | mirkwood | 0.241 | 0.205 | −0.069 | 0.074 | 0.001 |
Prospector | 0.907 | 0.99 | −0.687 | −0.557 | 7.314 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gilda, S. Beyond mirkwood: Enhancing SED Modeling with Conformal Predictions. Astronomy 2024, 3, 14-20. https://doi.org/10.3390/astronomy3010002
Gilda S. Beyond mirkwood: Enhancing SED Modeling with Conformal Predictions. Astronomy. 2024; 3(1):14-20. https://doi.org/10.3390/astronomy3010002
Chicago/Turabian StyleGilda, Sankalp. 2024. "Beyond mirkwood: Enhancing SED Modeling with Conformal Predictions" Astronomy 3, no. 1: 14-20. https://doi.org/10.3390/astronomy3010002
APA StyleGilda, S. (2024). Beyond mirkwood: Enhancing SED Modeling with Conformal Predictions. Astronomy, 3(1), 14-20. https://doi.org/10.3390/astronomy3010002