A Survey of Numerical Simulation Tools for Offshore Wind Turbine Systems
Abstract
:1. Introduction
2. Structural Codes
3. Aerodynamic Codes
4. Hydrodynamic Codes
5. Mooring Codes
6. Numerical Simulation Tools
6.1. FAST Computer-Aided Engineering Tool
6.1.1. FAST Modularization Framework
6.1.2. ElastoDyn
6.1.3. BeamDyn
6.1.4. AeroDyn
6.1.5. HydroDyn
6.1.6. InflowWind
6.1.7. SubDyn
6.1.8. MAP++
6.1.9. MoorDyn
6.1.10. FEAMooring
6.1.11. IceFloe and IceDyn
6.1.12. Transition to OpenFAST
6.2. OrcaFlex
6.3. OPASS
6.4. Bladed
- Prandtl’s tip and root loss, to account for the effect of the blade tip vortices on induced velocity;
- Dynamic wake model;
- Glauert skew model;
- Dynamic stall model, including Beddoes–Leishman compressible and incompressible flows and Øye dynamic stall.
6.5. HAWC2
6.6. aNySIM
6.7. PHATAS
- Continuous flapwise blade bending;
- Continuous edgewise blade bending;
- Passive or controlled pitch;
- Blade flapping hinges;
- Teetered hub;
- Generator characteristics;
- Drivetrain;
- Tower torsion;
- Tower bending.
6.8. 3DFloat
6.9. DeepLines Wind
6.10. SAMCEF
6.11. Sesam
- –
- Sestra: a program for static and dynamic structural analysis. The finite element approach was used to formulate it. Sestra may also analyze gap/contact problems and members that are just in tension or compression.
- –
- Wajac: Wind, wave, and current loads on fixed and rigid frame structures are calculated using this program. In either a frequency- or time-domain simulation, the load is calculated using the Morison equation. Hydrodynamic loads due to irregular, regular, or constrained waves can be computed using time-domain analysis.
- –
- Splice: nonlinear analysis of the structure–pile–soil interaction problems.
- –
- Framework: fatigue analysis of structures.
- –
- Fatigue Manager: time-domain fatigue and ultimate strength analysis under combined wind and wave loads.
- –
- Wadam: linear frequency-domain hydrodynamics.The hydrodynamic loads are determined using the Morison equation as well as first- and second-order potential theory. In addition, through frequency-domain simulation analysis, the incident waves are defined as an Airy wave.
- –
- Wasim: nonlinear time-domain hydrodynamics.Wasim is based on the Morison equation, which uses the Rankin panel approach to solve the 3D diffraction/radiation problem.
- –
- Sima: modelling, analysis, control, and results presentation.This is a time-domain simulation tool that uses a fully coupled technique to simulate a floating wind turbine. The hydrodynamics of the substructure can be estimated using conventional hydrodynamic programs, while the mooring system can be specified in Sima.
- –
- Simo: simulation of motions.
- –
- Riflex: analysis of moorings.
- Integrated analysis: This method involves modelling in Sesam, which is then imported and coupled to a wind turbine model in a tool like Bladed. After computing the resulting forces and loads for each component, the data are translated into Sesam for postprocessing, which includes fatigue and ultimate analysis, as shown in Figure 4.
- Super-element and sequential analysis: Wave loads are generated in Sesam using the super-element technique. The wind turbine is modelled in a separate third-party software package, and the wind turbine loads are extracted at an interface point. Sesam may use wind turbine loads from any third-party wind turbine tool, where converters for Bladed, BHAWC, and HAWC2 are available. These loads are then incorporated into the Sesam analysis, followed by a dynamic analysis to determine the structure’s stress time histories. Following that, the stresses are postprocessed to meet fatigue limit state and/or ultimate limit state criteria [109]. A super-element approach is employed in a special type of sequential analysis, in which the model and wave loads are converted into a super-element file and wave load files from Sesam, which are then used by the turbine load calculation tool. This is mostly used in conjunction with Bladed and Siemens Gamesa’s BHAWC. These approaches are illustrated in Figure 5 and Figure 6.
6.12. UTWind
7. Discussion
8. Conclusions
9. Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Haghshenas, A.; Hasan, A.; Osen, O.; Mikalsen, E.T. Predictive digital twin for offshore wind farms. Energy Inform. 2023, 6, 1. [Google Scholar] [CrossRef]
- Mei, D. A Race to the Top: China 2023; Technical Report; Global Energy Monitor: California, CA, USA, 2023. [Google Scholar]
- Christopher, T.R.; Goldstein, M.; Williams, M.; Carter, A. The Road to 30 Gigawatts: Key Actions to Scale an Offshore Wind Industry in the United States; Technical Report; Center for American Progress: Washington, DC, USA, 2022. [Google Scholar]
- Otter, A.; Murphy, J.; Pakrashi, V.; Robertson, A.; Desmond, C. A review of modelling techniques for floating offshore wind turbines. Wind Energy 2022, 25, 831–857. [Google Scholar] [CrossRef]
- Robertson, A.; Jonkman, J.; Vorpahl, F.; Popko, W.; Qvist, J.; Frøyd, L.; Chen, X.; Azcona, J.; Uzunoglu, E.; Soares, C.G.; et al. Offshore code comparison collaboration continuation within IEA wind task 30: Phase II results regarding a floating semisubmersible wind system. In Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering—OMAE, San Francisco, CA, USA, 8–13 June 2014; Volume 45547, p. V09BT09A012. [Google Scholar] [CrossRef]
- Sayed, M.; Klein, L.; Lutz, T.; Krämer, E. The impact of the aerodynamic model fidelity on the aeroelastic response of a multi-megawatt wind turbine. Renew. Energy 2019, 140, 304–318. [Google Scholar] [CrossRef]
- Riziotis, V.A.; Voutsinas, S.G.; Politis, E.S.; Chaviaropoulos, P.K.; Hansen, A.M.; Madsen, H.A.; Rasmussen, F. Identification of structural non-linearities due to large deflections on a 5 MW wind turbine blade. In Proceedings of the Scientific Proceedings, Brussels, Belgium, 22–24 September 2008; pp. 9–14. [Google Scholar]
- Jeong, M.S.; Yoo, S.J.; Lee, I. Aeroelastic Analysis for Large Wind Turbine Rotor Blades. In Proceedings of the 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Denver, CO, USA, 4–7 April 2011. [Google Scholar] [CrossRef]
- Wang, L.; Liu, X.; Kolios, A. State of the art in the aeroelasticity of wind turbine blades: Aeroelastic modelling. Renew. Sustain. Energy Rev. 2016, 64, 195–210. [Google Scholar] [CrossRef]
- Jonkman, J.M.; Musial, W. Offshore Code Comparison Collaboration (OC3) for IEA Wind Task 23 Offshore Wind Technology and Deployment; Technical Report; National Renewable Energy Laboratory: Golden, CO, USA, 2010. [Google Scholar]
- Popko, W.; Vorpahl, F.; Zuga, A.; Kohlmeier, M.; Jonkman, J.; Robertson, A.; Larsen, T.J.; Yde, A.; Sætertrø, K.; Okstad, K.M.; et al. Offshore Code Comparison Collaboration Continuation (OC4), Phase 1—Results of Coupled Simulations of an Offshore Wind Turbine with Jacket Support Structure. In ISOPE International Ocean and Polar Engineering Conference; ISOPE: Rhodes, Greece, 2012. [Google Scholar]
- Robertson, A.; Jonkman, J.M.; Musial, W.; Vorphal, F.; Popko, W. Offshore Code Comparison Collaboration, Continuation: Phase II Results of a Floating Semisubmersible Wind System. In Proceedings of the Roceedings, EWEA Offshore, Frankfurt, Germany, 19–21 November 2013. [Google Scholar]
- Robertson, A.N.; Wendt, F.F.; Jonkman, J.M.; Popko, W.; Vorpahl, F.; Stansberg, C.T.; Bachynski, E.E.; Bayati, I.; Beyer, F.; de Vaal, J.B.; et al. OC5 Project Phase I: Validation of Hydrodynamic Loading on a Fixed Cylinder. In ISOPE International Ocean and Polar Engineering Conference; ISOPE: Mountain View, CA, USA, 2015. [Google Scholar]
- Robertson, A.N.; Wendt, F.; Jonkman, J.M.; Popko, W.; Dagher, H.; Gueydon, S.; Qvist, J.; Vittori, F.; Azcona, J.; Uzunoglu, E.; et al. OC5 Project Phase II: Validation of Global Loads of the DeepCwind Floating Semisubmersible Wind Turbine. Energy Procedia 2017, 137, 38–57. [Google Scholar] [CrossRef]
- Robertson, A.N.; Wendt, F.; Jonkman, J.M.; Popko, W.; Borg, M.; Bredmose, H.; Schlutter, F.; Qvist, J.; Bergua, R.; Harries, R.; et al. OC5 Project Phase Ib: Validation of Hydrodynamic Loading on a Fixed, Flexible Cylinder for Offshore Wind Applications. Energy Procedia 2016, 94, 82–101. [Google Scholar] [CrossRef]
- Robertson, A.N.; Gueydon, S.; Bachynski, E.; Wang, L.; Jonkman, J.; Alarcón, D.; Amet, E.; Beardsell, A.; Bonnet, P.; Boudet, B.; et al. OC6 Phase I: Investigating the underprediction of low-frequency hydrodynamic loads and responses of a floating wind turbine. J. Phys. Conf. Ser. 2020, 1618, 032033. [Google Scholar] [CrossRef]
- Bergua, R.; Robertson, A.; Jonkman, J.; Branlard, E.; Fontanella, A.; Belloli, M.; Schito, P.; Zasso, A.; Persico, G.; Sanvito, A.; et al. OC6 project Phase III: Validation of the aerodynamic loading on a wind turbine rotor undergoing large motion caused by a floating support structure. Wind Energy Sci. 2023, 8, 465–485. [Google Scholar] [CrossRef]
- Davidson, J.; Ringwood, J. Mathematical Modelling of Mooring Systems for Wave Energy Converters—A Review. Energies 2017, 10, 666. [Google Scholar] [CrossRef]
- Masciola, M.D.; Jonkman, J.M.; Robertson, A. Implementation of a Multisegmented, Quasi-Static Cable Model. In Proceedings of the Twenty-Third (2013) International Offshore and Polar Engineering Conferenc, Anchorage, AK, USA, 30 June–5 July 2013. [Google Scholar]
- Masciola, M.; Jonkman, J.; Robertson, A. Extending the Capabilities of the Mooring Analysis Program: A Survey of Dynamic Mooring Line Theories for Integration Into FAST. In Proceedings of the Volume 9A: Ocean Renewable Energy, San Francisco, CA, USA, 8–13 June 2014. [Google Scholar] [CrossRef]
- Walton, T.S.; Polachek, H. Calculation of transient motion of submerged cables. Math. Comput. 1960, 14, 27–46. [Google Scholar] [CrossRef]
- Leonard, J.W.; Nath, J.H. Comparison of finite element and lumped parameter methods for oceanic cables. Eng. Struct. 1981, 3, 153–167. [Google Scholar] [CrossRef]
- Winget, J.; Huston, R. Cable dynamics—A finite segment approach. Comput. Struct. 1976, 6, 475–480. [Google Scholar] [CrossRef]
- Kamman, J.W.; Huston, R.L. Modelling of submerged cable dynamics. Comput. Struct. 1985, 20, 623–629. [Google Scholar] [CrossRef]
- Nichol, T.; DuBuque, G.; Fabien, B. Dynamic modelling of compliant-moored submerged systems with applications to marine energy converters. In Proceedings of the 2nd Marine Energy Technology Symposium (METS2014), Seattle, WA, USA, 15–18 April 2014. [Google Scholar]
- Garrett, D.L. Coupled Analysis of Floating Production Systems. Ocean Eng. 2005, 32, 802–816. [Google Scholar] [CrossRef]
- Jonkman, J.; Butterfield, S.; Musial, W.; Scott, G. Definition of a 5-MW Reference Wind Turbine for Offshore System Development; Technical Report; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2009. [Google Scholar] [CrossRef]
- Jonkman, J.M.; Wright, A.D.; Hayman, G.J.; Robertson, A.N. Full-System Linearization for Floating Offshore Wind Turbines in OpenFAST. In Proceedings of the ASME 2018 1st International Offshore Wind Technical Conference, San Francisco, CA, USA, 4–7 November 2018. [Google Scholar] [CrossRef]
- Jonkman, J.M. Dynamics of offshore floating wind turbines-model development and verification. Wind Energy 2009, 12, 459–492. [Google Scholar] [CrossRef]
- Wang, Q.; Sprague, M.A.; Jonkman, J.; Johnson, N.; Jonkman, B. BeamDyn: A high-fidelity wind turbine blade solver in the FAST modular framework. Wind Energy 2017, 20, 1439–1462. [Google Scholar] [CrossRef]
- Ning, A.; Hayman, G.; Damiani, R.; Jonkman, J.M. Development and Validation of a New Blade Element Momentum Skewed-Wake Model within AeroDyn. In Proceedings of the 33rd Wind Energy Symposium, Kissimmee, FL, USA, 5–9 January 2015. [Google Scholar] [CrossRef]
- Wendt, F.F.; Robertson, A.; Jonkman, J.M.; Hayman, G. Verification of New Floating Capabilities in FAST v8. In Proceedings of the 33rd Wind Energy Symposium, Kissimmee, FL, USA, 5–9 January 2015. [Google Scholar] [CrossRef]
- Branlard, E.S.P. Flexible multibody dynamics using joint coordinates and the Rayleigh-Ritz approximation: The general framework behind and beyond Flex. Wind Energy 2019, 22, 877–893. [Google Scholar] [CrossRef]
- Saverin, J.; Peukert, J.; Marten, D.; Pechlivanoglou, G.; Paschereit, C.O.; Greenblatt, D. Aeroelastic simulation of multi-MW wind turbines using a free vortex model coupled to a geometrically exact beam model. J. Phys. Conf. Ser. 2016, 753, 082015. [Google Scholar] [CrossRef]
- Dose, B.; Rahimi, H.; Stoevesandt, B.; Peinke, J.; Schepers, J. On the effect of blade deformations on the aerodynamic performance of wind turbine rotors subjected to yawed inflow. J. Phys. Conf. Ser. 2018, 1037, 022030. [Google Scholar] [CrossRef]
- Qu, X.; Li, Y.; Tang, Y.; Chai, W.; Gao, Z. Comparative study of short-term extreme responses and fatigue damages of a floating wind turbine using two different blade models. Appl. Ocean Res. 2020, 97, 102088. [Google Scholar] [CrossRef]
- Wang, Q.; Sprague, M.A.; Jonkman, J.M. Nonlinear Legendre Spectral Finite Elements for Wind Turbine Blade Dynamics. In Proceedings of the 32nd ASME Wind Energy Symposium, National Harbor, MD, USA, 13–17 January 2014. [Google Scholar] [CrossRef]
- Wang, Q.; Sprague, M.A.; Jonkman, J.M. Partitioned nonlinear structural analysis of wind turbines using BeamDyn. In Proceedings of the 34th Wind Energy Symposium, San Diego, CA, USA, 4–8 January 2016. [Google Scholar] [CrossRef]
- Jonkman, J.M.; Jonkman, B.J. FAST modularization framework for wind turbine simulation: Full-system linearization. J. Phys. Conf. Ser. 2016, 753, 082010. [Google Scholar] [CrossRef]
- Wang, Q.; Jonkman, J.M.; Sprague, M.; Jonkman, B. BeamDyn User’s Guide and Theory Manual; Technical Report; National Renewable Energy Laboratory: Golden, CO, USA, 2016. [Google Scholar]
- Damiani, R.R.; Hayman, G. The Unsteady Aerodynamics Module for FAST8; Technical Report; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2019. [Google Scholar] [CrossRef]
- Karimirad, M.; Bachynski, E.E. Sensitivity Analysis of Limited Actuation for Real-time Hybrid Model Testing of 5 MW Bottom-fixed Offshore Wind Turbine. Energy Procedia 2017, 137, 14–25. [Google Scholar] [CrossRef]
- Yang, Y.; Bashir, M.; Michailides, C.; Li, C.; Wang, J. Development and application of an aero-hydro-servo-elastic coupling framework for analysis of floating offshore wind turbines. Renew. Energy 2020, 161, 606–625. [Google Scholar] [CrossRef]
- Yang, Y.; Bashir, M.; Wang, J.; Yu, J.; Li, C. Performance evaluation of an integrated floating energy system based on coupled analysis. Energy Convers. Manag. 2020, 223, 113308. [Google Scholar] [CrossRef]
- Benitz, M.A.; Schmidt, D.P.; Lackner, M.A.; Stewart, G.M.; Jonkman, J.; Robertson, A. Validation of Hydrodynamic Load Models Using CFD for the OC4-DeepCwind Semisubmersible. In Volume 9: Ocean Renewable Energy; American Society of Mechanical Engineers: New York, NY, USA, 2015. [Google Scholar] [CrossRef]
- Matha, D. Model Development and Loads Analysis of an Offshore Wind Turbine on a Tension Leg Platform with a Comparison to Other Floating Turbine Concepts: April 2009; Technical Report; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2010. [Google Scholar] [CrossRef]
- Guntur, S.; Jonkman, J.M.; Jonkman, B.; Wang, Q.; Sprague, M.A.; Hind, M.; Sievers, R.; Schreck, S.J. FAST v8 Verification and Validation for a Megawatt-Scale Wind Turbine with Aeroelastically Tailored Blades: Preprint. In Proceedings of the American Institute of Aeronautics and Astronautics Science and Technology Forum and Exposition (SciTech 2016), San Diego, CA, USA, 4–8 January 2016. [Google Scholar]
- Jonkman, B.J. Turbsim User’s Guide: Version 1.50; Technical Report; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2009. [Google Scholar] [CrossRef]
- Damiani, R.; Jonkman, J.; Hayman, G. SubDyn User’s Guide and Theory Manual; Technical Report; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2015. [Google Scholar] [CrossRef]
- Song, H.; Damiani, R.; Robertson, A.N.; Jonkman, J.M. New Structural-Dynamics Module for Offshore Multimember Substructures within the Wind Turbine Computer-Aided Engineering Tool FAST: Preprint. In Proceedings of the 23rd International Ocean, Offshore and Polar Engineering Conference ISOPE 2013, Anchorage, AK, USA, 30 June–5 July 2013. [Google Scholar]
- Andersen, M.T.; Wendt, F.F.; Robertson, A.; Jonkman, J.; Hall, M. Verification and Validation of Multisegmented Mooring Capabilities in FAST v8. In Proceedings of the Twenty-Sixth (2016) International Ocean and Polar Engineering Conference (ISOPE), Rhodes, Greece, 26 June–1 July 2016. [Google Scholar]
- Masciola, M.D. MAP++ Documentation; NREL: Golden, CO, USA, 2018. [Google Scholar]
- Wendt, F.; Robertson, A.; Jonkman, J.; Andersen, M.T. Verification and Validation of the New Dynamic Mooring Modules Available in FAST v8: Preprint. In Proceedings of the Twenty-Sixth (2016) International Ocean and Polar Engineering Conference (ISOPE), Rhodes, Greece, 26 June–1 July 2016. [Google Scholar]
- Hall, M. Efficient Modelling of Seabed Friction and Multi-Floater Mooring Systems in MoorDyn. In Proceedings of the 12th European Wave and Tidal Energy Conference, Cork, Ireland, 27 August–1 September 2017. [Google Scholar]
- Pribadi, A.B.K.; Donatini, L.; Lataire, E. Numerical Modelling of a Mussel Line System by Means of Lumped-Mass Approach. J. Mar. Sci. Eng. 2019, 7, 309. [Google Scholar] [CrossRef]
- Hall, M. MoorDyn User’s Guide; Technical Report; University of Maine: Orono, ME, USA, 2015. [Google Scholar]
- Bae, Y. Development of a Dynamic Mooring Module Feam for Fast v8; Technical Report; Texas A and M University: College Station, TX, USA, 2014. [Google Scholar]
- Min, H. Numerical Simulation of Floating Offshore Wind Turbine Dynamic Responses with Experimental Comparison. Doctoral Dissertation, Texas A and M University, College Station, TX, USA, 2018. [Google Scholar]
- Andersen, M.T. Floating Foundations for Offshore Wind Turbines. Ph.D. Thesis, Aalborg University, Aalborg, Denmark, 2016. [Google Scholar] [CrossRef]
- Yu, B.; Karr, D.G.; Song, H.; Sirnivas, S. A Surface Ice Module for Wind Turbine Dynamic Response Simulation Using FAST. J. Offshore Mech. Arct. Eng. 2016, 138, 051501. [Google Scholar] [CrossRef]
- Karr, D.G.; Yu, B.; Sirnivas, S. Bottom Fixed Platform Dynamics Models Assessing Surface Ice Interactions for Transitional Depth Structures in the Great Lakes: FAST8—IceDyn; Technical Report; Golden Field Office: Golden, CO, USA, 2015. [Google Scholar] [CrossRef]
- Song, Z.; Hu, Y.; Cheng, Y.; Wang, H. Dynamic Ice Load Alleviation of Offshore Wind Turbine via Optimized Pitch Control. In Proceedings of the 2019 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Macao, China, 1–4 December 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Johnson, N.; Jonkman, J.; Wright, A.; Hayman, G.; Robertson, A. Verification of Floating Offshore Wind Linearization Functionality in OpenFAST. J. Phys. Conf. Ser. 2019, 1356, 012022. [Google Scholar] [CrossRef]
- Arramounet, V.; de Winter, C.; Maljaars, N.; Girardin, S.; Robic, H. Development of coupling module between BHawC aeroelastic software and OrcaFlex for coupled dynamic analysis of floating wind turbines. J. Phys. Conf. Ser. 2019, 1356, 012007. [Google Scholar] [CrossRef]
- Masciola, M.; Robertson, A.; Jonkman, J.; Coulling, A.; Goupee, A. Assessment of the Importance of Mooring Dynamics on the Global Response of the DeepCwind Floating Semisubmersible Offshore Wind Turbine. In Proceedings of the Twenty-Third International Offshore and Polar Engineering Conference, Anchorage, AK, USA, 30 June–5 July 2013. [Google Scholar]
- Tran, T.T.; Kim, D.H. The coupled dynamic response computation for a semi-submersible platform of floating offshore wind turbine. J. Wind. Eng. Ind. Aerodyn. 2015, 147, 104–119. [Google Scholar] [CrossRef]
- Masciola, M.; Robertson, A.; Jonkman, J.; Driscoll, F. Investigation of a FAST-OrcaFlex Coupling Module for Integrating Turbine and Mooring Dynamics of Offshore Floating Wind Turbines: Preprint. In Proceedings of the 2011 International Conference on Offshore Wind Energy and Ocean Energy, Beijing, China, 31 October–2 November 2011. [Google Scholar]
- Ross, A. Orcina Project 1405 Wind Turbine Validation Report; Technical Report; Orcina Ltd.: Ulverston, UK, 2018. [Google Scholar]
- Azcona, J.; Munduate, X.; González, L.; Nygaard, T.A. Experimental validation of a dynamic mooring lines code with tension and motion measurements of a submerged chain. Ocean Eng. 2017, 129, 415–427. [Google Scholar] [CrossRef]
- Azcona, J.; Palacio, D.; Munduate, X.; González, L.; Nygaard, T.A. Impact of mooring lines dynamics on the fatigue and ultimate loads of three offshore floating wind turbines computed with IEC 61400-3 guideline. Wind Energy 2017, 20, 797–813. [Google Scholar] [CrossRef]
- Jonkman, J.M. Dynamics Modeling and Loads Analysis of an Offshore Floating Wind Turbine; Technical Report; University of Colorado at Boulder: Boulder, CO, USA, 2007. [Google Scholar]
- Nygaard, T.A.; De Vaal, J.; Pierella, F.; Oggiano, L.; Stenbro, R. Development, Verification and Validation of 3DFloat; Aero-servo-hydro-elastic Computations of Offshore Structures. Energy Procedia 2016, 94, 425–433. [Google Scholar] [CrossRef]
- Armendariz, A.J.; Munduate, X.; Nygaard, T.A.; Hoyos, M.D. Development of OPASS Code for Dynamic Simulation Mooring Lines in Contact with Seabed. In Proceedings of the EWEA Offshore 2011 Conference Proceedings, Amsterdam, The Netherlands, 29 November–1 December 2011; pp. 1–9. [Google Scholar]
- Stewart, G.; Lackner, M.; Robertson, A.; Jonkman, J.; Goupee, A. Calibration and Validation of a FAST Floating Wind Turbine Model of the DeepCwind Scaled Tension-Leg Platform: Preprint. In Proceedings of the 22nd International Offshore and Polar Engineering Conference, Rhodes, Greece, 17–22 June 2012. [Google Scholar]
- Robertson, A.; Jonkman, J.; Masciola, M.; Song, H.; Goupee, A.; Coulling, A.; Luan, C. Definition of the Semisubmersible Floating System for Phase II of OC4; Technical Report; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2014. [Google Scholar] [CrossRef]
- Hassan, G. Bladed Theory Manual Version 4.0; Technical Report; DNV Services UK Limited: Bristol, UK, 2010. [Google Scholar]
- Craig, R., Jr. Coupling of substructures for dynamic analyses—An overview. In Proceedings of the 41st Structures, Structural Dynamics, and Materials Conference and Exhibit, Atlanta, GA, USA, 3–6 April 2000. [Google Scholar] [CrossRef]
- Beardsell, A.; Collier, W.; Han, T. Effect of linear and non-linear blade modelling techniques on simulated fatigue and extreme loads using Bladed. J. Phys. Conf. Ser. 2016, 753, 042002. [Google Scholar] [CrossRef]
- Collier, W.; Milian Sanz, J. Comparison of linear and non-linear blade model predictions in Bladed to measurement data from GE 6MW wind turbine. J. Phys. Conf. Ser. 2016, 753, 082004. [Google Scholar] [CrossRef]
- Larsen, T.J.; Hansen, A.M. How 2 HAWC2, the User’s Manual; Technical Report; Risø National Laboratory, Technical University of Denmark: Roskilde, Denmark, 2007. [Google Scholar]
- Bellew, S.; Yde, A.; Verelst, D.R. Application of the Aero-Hydro-Elastic Model, HAWC2-WAMIT, to Offshore Data from Floating Power Plants Hybrid Wind- and Wave-Energy Test Platform, P37. In Proceedings of the 5th International Conference on Ocean Energy (ICOE), Halifax, NS, Canada, 4–6 November 2014. [Google Scholar]
- Pavese, C.; Wang, Q.; Kim, T.; Jonkman, J.; Sprague, M.A. HAWC2 and BeamDyn: Comparison Between Beam Structural Models for Aero-Servo-Elastic Frameworks. In Proceedings of the European Wind Energy Association Annual Conference and Exhibition 2015 (EWEA 2015), Paris, France, 17–20 November 2015. [Google Scholar]
- Gueydon, S.; Lindenburg, K.; Savenije, F. Coupling of Two Tools for the Simulation of Floating Wind Turbines. In Proceedings of the Volume 8: Ocean Renewable Energy, Melbourne, Australia, 11–16 June 2013. [Google Scholar] [CrossRef]
- Naciri, M.; Waals, O.; de Wilde, J. Time Domain Simulations of Side-by-Side Moored Vessels: Lessons Learnt From a Benchmark Test. In Volume 1: Offshore Technology; Special Symposium on Ocean Measurements and Their Influence on Design; ASMEDC: Stamford, CT, USA, 2007; pp. 801–811. [Google Scholar] [CrossRef]
- de Wilde, J.; van Dijk, A.; van den Berg, J.; Dekker, J. Direct Time Domain Downtime Assessment For LNG Operations Using Computer Cluster. In Proceedings of the Nineteenth International Offshore and Polar Engineering Conference, Osaka, Japan, 21–26 July 2009. [Google Scholar]
- Serraris, J.J. Time Domain Analysis for DP Simulations. Int. Conf. Offshore Mech. Arct. Eng. 2009, 43413, 595–605. [Google Scholar] [CrossRef]
- Gueydon, S.; Weller, S. Study of a Floating Foundation for Wind Turbines. J. Offshore Mech. Arct. Eng. 2013, 135, 031903. [Google Scholar] [CrossRef]
- Gueydon, S.; Xu, W. Floating wind turbine motion assessment. In Proceedings of the OCEANS’11 MTS/IEEE KONA, Waikoloa, HI, USA, 19–22 September 2011; pp. 1–10. [Google Scholar] [CrossRef]
- Lindenburg, C. Comparison of Phatas Versions and the Wind turbine Module; Technical Report; ECN: Petten, The Netherlands, 2011. [Google Scholar]
- Lindenburg, C. PHATAS Release NOV-2003 and APR-2005 User’s Manual: Program for Horizontal Axis Wind Turbine Analysis and Simulation; Technical Report; ECN: Petten, The Netherlands, 2005. [Google Scholar]
- Huijs, F.; de Bruijn, R.; Savenije, F. Concept Design Verification of a Semi-submersible Floating Wind Turbine Using Coupled Simulations. Energy Procedia 2014, 53, 2–12. [Google Scholar] [CrossRef]
- Liu, Y.; Li, S.; Yi, Q.; Chen, D. Developments in semi-submersible floating foundations supporting wind turbines: A comprehensive review. Renew. Sustain. Energy Rev. 2016, 60, 433–449. [Google Scholar] [CrossRef]
- Myhr, A.; Nygaard, T.A. Comparison of Experimental Results and Computations for Tension-Leg-Buoy Offshore Wind Turbines. J. Ocean Wind Energy 2015, 2, 12–20. [Google Scholar]
- Azcona, J.; Bouchotrouch, F.; González, M.; Garciandía, J.; Munduate, X.; Kelberlau, F.; Nygaard, T.A. Aerodynamic Thrust Modelling in Wave Tank Tests of Offshore Floating Wind Turbines Using a Ducted Fan. J. Phys. Conf. Ser. 2014, 524, 012089. [Google Scholar] [CrossRef]
- Pai, P. Highly Flexible Structures: Modeling, Computation, and Experimentation; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2007. [Google Scholar] [CrossRef]
- Chaplin, J.R. Developments of stream-function wave theory. Coast. Eng. 1979, 3, 179–205. [Google Scholar] [CrossRef]
- Lee, C.H. WAMIT Theory Manual; Technical Report; Massachusetts Institute of Technology: Cambridge, MA, USA, 1995. [Google Scholar]
- Babarit, A.; Delhommeau, G. Theoretical and numerical aspects of the open source BEM solver NEMOH. In Proceedings of the 11th European Wave and Tidal Energy Conference (EWTEC2015), Nantes, France, 6–11 September 2015. [Google Scholar]
- Det Norske Veritaswadam. SESAM User Manual Developed and Marketed; Technical Report; DNV: Bærum, Norway, 2010. [Google Scholar]
- Le Cunff, C.; Heurtier, J.M.; Piriou, L.; Berhault, C.; Perdrizet, T.; Teixeira, D.; Ferrer, G.; Gilloteaux, J.C. Fully Coupled Floating Wind Turbine Simulator Based on Nonlinear Finite Element Method: Part I—Methodology. In Proceedings of the Volume 8: Ocean Renewable Energy, Melbourne, Australia, 11–16 June 2013. [Google Scholar] [CrossRef]
- Perdrizet, T.; Gilloteaux, J.C.; Teixeira, D.; Ferrer, G.; Piriou, L.; Cadiou, D.; Heurtier, J.M.; Le Cunff, C. Fully Coupled Floating Wind Turbine Simulator Based on Nonlinear Finite Element Method: Part II—Validation Results. In Proceedings of the Volume 8: Ocean Renewable Energy, Melbourne, Australia, 11–16 June 2013. [Google Scholar] [CrossRef]
- Leroy, J.M.; Poirette, Y.; Brusselle Dupend, N.; Caleyron, F. Assessing Mechanical Stresses in Dynamic Power Cables for Floating Offshore Wind Farms. In Volume 10: Ocean Renewable Energy; American Society of Mechanical Engineers: New York, NY, USA, 2017. [Google Scholar] [CrossRef]
- Ledru, R.; Le Cunff, C.; Heurtier, J.M.; Perdrizet, T.; Poirette, Y. Influence of Hydrodynamic Modeling Assumptions on Floating Wind Turbine Behaviour. In Volume 9B: Ocean Renewable Energy; American Society of Mechanical Engineers: New York, NY, USA, 2014. [Google Scholar] [CrossRef]
- Evren, S.; Unel, M.; Adak, O.K.; Erbatur, K.; Aksit, M.F. Modeling and simulation of a horizontal axis Wind Turbine using S4WT. In Proceedings of the 2012 International Conference on Renewable Energy Research and Applications (ICRERA), Nagasaki, Japan, 11–14 November 2012; pp. 1–6. [Google Scholar]
- Prasad, C.; Chen, Q.Z.; Bruls, O.; D’Ambrosio, F.; Dimitriadis, G. Advanced aeroservoelastic modeling for horizontal axis wind turbines. In Proceedings of the 9th International Conference on Structural Dynamics, EURODYN 2014, Porto, Portugal, 30 June–2 July 2014; pp. 3097–3104. [Google Scholar]
- Gözcü, M.O.; Kayran, A. Investigation of the effect of bending twisting coupling on the loads in wind turbines with superelement blade definition. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2014; Volume 524, p. 12040. [Google Scholar]
- Heege, A.; Gaull, A.; Horcas, S.G.; Bonnet, P.; Defourny, M. Experiences in controller adaptations of floating wind turbines through advanced numerical simulation. In Proceedings of the AWEA WINDPOWER 2013 Conference and Exhibition, Chicago, IL, USA, 21–22 October 2013; pp. 5–8. [Google Scholar]
- Digital Solutions at DNV. Sesam Feature Description; Technical Report; DNV: Bærum, Norway, 2022. [Google Scholar]
- Alblas, L. Fixed Offshore Wind Structure Design, What Sesam Can Do for Fixed Offshore Wind Turbine Structure Design and Analysis; Technical Report; DNV GL—Digital Solutions: Bærum, Norway, 2018. [Google Scholar]
- Barrera, C.; Guanche, R.; Rodríguez, Á.; Armesto, J.A.; Losada, I.J. On the importance of mooring system parametrisation for accurate floating structure designs. Mar. Struct. 2020, 72, 102765. [Google Scholar] [CrossRef]
- Lu, H.; Fan, T.; Zhou, L.; Chen, C.; Yu, G.; Li, X.; Hou, F. A rapid response calculation method for symmetrical floating structures based on state–space model solving in hybrid time-Laplace domain. Ocean Eng. 2020, 203, 107227. [Google Scholar] [CrossRef]
- Suzuki, H.; Shibata, H.; Fujioka, H.; Hirabayashi, S.; Ishii, K.; Kikuchi, H. Development of an Analysis Code of Rotor-Floater Coupled Response of a Floating Offshore Wind Turbine. In Proceedings of the Volume 8: Ocean Renewable Energy, Melbourne, Australia, 11–16 June 2013. [Google Scholar] [CrossRef]
- Ishii, K.; Suzuki, H.; Hirabayashi, S. 2015S-OS1-7 Improvement of Accuracy of Wave Drift Force of a Floating Offshore Wind Turbine. In Conference Proceedings The Japan Society of Naval Architects and Ocean Engineers 20; The Japan Society of Naval Architects and Ocean Engineers: Tokyo, Japan, 2015; pp. 25–28. [Google Scholar]
- Shiohara, H.; Gonçalves, R.T.; Houtani, H.; Suzuki, H.; Schnepf, A.; Hirabayashi, S.; Carmo, L.H.S.; Nihei, Y. Numerical and experimental comparison of the wave response of a very light floating offshore wind turbine with guy wires. In International Conference on Offshore Mechanics and Arctic Engineering; American Society of Mechanical Engineers: New York, NY, USA, 2020; Volume 84317, p. V001T01A055. [Google Scholar]
- Suzuki, H.; Xiong, J.; do Carmo, L.H.S.; Vieira, D.P.; de Mello, P.C.; Malta, E.B.; Simos, A.N.; Hirabayashi, S.; Gonçalves, R.T. Elastic response of a light-weight floating support structure of FOWT with guywire supported tower. J. Mar. Sci. Technol. 2019, 24, 1015–1028. [Google Scholar] [CrossRef]
- Hooft, J.P. Hydrodynamic Aspects of Semi-Submersible Platforms. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 1972. [Google Scholar]
- Faraggiana, E.; Giorgi, G.; Sirigu, M.; Ghigo, A.; Bracco, G.; Mattiazzo, G. A review of numerical modelling and optimisation of the floating support structure for offshore wind turbines. J. Ocean Eng. Mar. Energy 2022, 8, 433–456. [Google Scholar] [CrossRef]
- Gözcü, O.; Kontos, S.; Bredmose, H. Dynamics of two floating wind turbines with shared anchor and mooring lines. J. Phys. Conf. Ser. 2022, 2265, 042026. [Google Scholar] [CrossRef]
- Karimirad, M. Modeling aspects of a floating wind turbine for coupled wave–wind-induced dynamic analyses. Renew. Energy 2013, 53, 299–305. [Google Scholar] [CrossRef]
- Veldman, P.N. Essentials in Coupled Dynamics of Floating Offshore Wind Turbines. Master’s Thesis, Delft University of Technology, Delft, The Netherlands, 2020. [Google Scholar]
- Vriends, C. Efficient Long Term CFD Simulation of the Tri-Floater Using ComFLOW. Master’s Thesis, Delft University of Technology, Delft, The Netherlands, 2021. [Google Scholar]
- Duarte, T.; Tomas, D.; Matha, D.; Sarmento, A.; Schuon, F. Verification of Engineering Modeling Tools for Floating Offshore Wind Turbines. In Proceedings of the Volume 8: Ocean Renewable Energy, Melbourne, Australia, 11–16 June 2013. [Google Scholar] [CrossRef]
- Utsunomiya, T.; Matsukuma, H.; Minoura, S.; Ko, K.; Hamamura, H.; Kobayashi, O.; Sato, I.; Nomoto, Y.; Yasui, K. At Sea Experiment of a Hybrid Spar for Floating Offshore Wind Turbine Using 1/10-Scale Model. J. Offshore Mech. Arct. Eng. 2013, 135. [Google Scholar] [CrossRef]
- Xu, S.; Xue, Y.; Zhao, W.; Wan, D. A Review of High-Fidelity Computational Fluid Dynamics for Floating Offshore Wind Turbines. J. Mar. Sci. Eng. 2022, 10, 1357. [Google Scholar] [CrossRef]
- Witha, B. CFD-Type Wake Models. In Handbook of Wind Energy Aerodynamics; Springer: Berlin/Heidelberg, Germany, 2022; pp. 1001–1038. [Google Scholar]
- Amano, R.; Malloy, R. CFD analysis on aerodynamic design optimization of wind turbine rotor blades. World Acad. Sci. Eng. Technol. 2009, 60, 71–75. [Google Scholar]
Software | Structure | Aerodynamic | Hydrodynamic | Mooring | Analysis Type |
---|---|---|---|---|---|
OpenFAST | RB + Modal/FEM + Dyn/QS | BEM + GDW/FVW | PF + ME | Lumped-mass + MSQS or with FEAMooring | time-domain |
OrcaFlex | RB + FEM + Dyn | With OpenFAST | PF + ME | 3-D FEM | both |
OPASS | With OpenFAST | With OpenFAST | With OpenFAST | Lumped-mass | time-domain [117] |
Bladed | Modal | BEM + GDW | ME + third-party code like WAMIT or coupled with SESAM | MBD | time-domain [117] |
HAWC2 | FEM + Dyn | BEM + GDW | ME + external DLL or third-party code like WAMIT | Shared mooring line design [118] or with SIMO/RIFLEX [119] | time-domain |
aNySIM | with PHATAS [120] | with PHATAS [120] | PF | Lumped-mass lines [121] | time-domain |
PHATAS | FEM + Modal | BEM | with aNySIM [120] | with aNySIM [120] | time-domain |
3DFloat | FEM | BEM | ME + third-party code like WAMIT | FEM [69] | time-domain |
DeepLines Wind | FEM | BEM | ME + PF + QTF | Solid elements + PF or deformable elements + ME | time-domain |
SAMCEF | FEM + MBD | BEM | ME | FEM + ME [122] | time-domain |
Sesam | FEM | With Bladed/HAWC2 | ME + PF + Airy wave | Panel method + ME [119] | both |
UTWind | BE | BEM | Hooft’s method + ME | Lumped-mass [115] | time-domain |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fadaei, S.; Afagh, F.F.; Langlois, R.G. A Survey of Numerical Simulation Tools for Offshore Wind Turbine Systems. Wind 2024, 4, 1-24. https://doi.org/10.3390/wind4010001
Fadaei S, Afagh FF, Langlois RG. A Survey of Numerical Simulation Tools for Offshore Wind Turbine Systems. Wind. 2024; 4(1):1-24. https://doi.org/10.3390/wind4010001
Chicago/Turabian StyleFadaei, Saeid, Fred F. Afagh, and Robert G. Langlois. 2024. "A Survey of Numerical Simulation Tools for Offshore Wind Turbine Systems" Wind 4, no. 1: 1-24. https://doi.org/10.3390/wind4010001
APA StyleFadaei, S., Afagh, F. F., & Langlois, R. G. (2024). A Survey of Numerical Simulation Tools for Offshore Wind Turbine Systems. Wind, 4(1), 1-24. https://doi.org/10.3390/wind4010001