Protein Source and Micronutrient Adequacy in Australian Adult Diets with Higher Diet Quality Score and Lower Environmental Impacts
Abstract
1. Introduction
2. Methods and Data
2.1. Background Data
2.2. Quadrant Analysis
2.3. Analysis of Animal/Plant Protein Ratio
2.4. Analyzing Nutrient Adequacy
2.5. Statistical Analyses
3. Results
3.1. Characteristics of the HQLI Subgroup
3.2. Animal/Plant Protein Ratio
3.3. Protein-Rich Food Choices
3.4. Nutrient Adequacy
4. Discussion
4.1. Desirable Animal/Plant Protein Ratio
4.2. Nutrients at Risk of Inadequate Intake
4.3. Limitations and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wolfe, R.R.; Church, D.D.; Ferrando, A.A.; Moughan, P.J. Consideration of the role of protein quality in determining dietary protein recommendations. Front. Nutr. 2024, 11, 1389664. [Google Scholar] [CrossRef] [PubMed]
- Calvez, J.; Azzout-Marniche, D.; Tomé, D. Protein quality, nutrition and health. Front. Nutr. 2024, 11, 1406618. [Google Scholar] [CrossRef] [PubMed]
- McAuliffe, G.A.; Takahashi, T.; Beal, T.; Huppertz, T.; Leroy, F.; Buttriss, J.; Collins, A.L.; Drewnowski, A.; McLaren, S.J.; Ortenzi, F.; et al. Protein quality as a complementary functional unit in life cycle assessment (LCA). Int. J. Life Cycle Assess. 2023, 28, 146–155. [Google Scholar] [CrossRef]
- Adhikari, S.; Schop, M.; de Boer, I.J.M.; Huppertz, T. Protein quality in perspective: A review of protein quality metrics and their applications. Nutrients 2022, 14, 947. [Google Scholar] [CrossRef]
- Semba, R.D. The rise and fall of protein malnutrition in global health. Ann. Nutr. Metab. 2016, 69, 79–88. [Google Scholar] [CrossRef]
- Sato, H.; Tsukamoto-Yasui, M.; Takado, Y.; Kawasaki, N.; Matsunaga, K.; Ueno, S.; Kanda, M.; Nishimura, M.; Karakawa, S.; Isokawa, M.; et al. Protein deficiency-induced behavioral abnormalities and neurotransmitter loss in aged mice are ameliorated by essential amino acids. Front. Nutr. 2020, 7, 23. [Google Scholar] [CrossRef]
- Lewicki, S.; Lesniak, M.; Bertrandt, J.; Kalicki, B.; Kubiak, J.Z.; Lewicka, A. The long-term effect of a protein-deficient-diet enriched with vitamin B6 on the blood parameters in unexercised and exercised rats. Food Agric. Immunol. 2018, 29, 722–734. [Google Scholar] [CrossRef]
- Granic, A.; Mendonça, N.; Sayer, A.A.; Hill, T.R.; Davies, K.; Adamson, A.; Siervo, M.; Mathers, J.C.; Jagger, C. Low protein intake, muscle strength and physical performance in the very old: The Newcastle 85+ study. Clin. Nutr. 2018, 37, 2260–2270. [Google Scholar] [CrossRef]
- Day, L.; Cakebread, J.A.; Loveday, S.M. Food proteins from animals and plants: Differences in the nutritional and functional properties. Trends Food Sci. Technol. 2022, 119, 428–442. [Google Scholar] [CrossRef]
- Kaur, L.; Mao, B.; Beniwal, A.S.; Abhilasha; Kaur, R.; Chian, F.M.; Singh, J. Alternative proteins vs animal proteins: The influence of structure and processing on their gastro-small intestinal digestion. Trends Food Sci. Technol. 2022, 122, 275–286. [Google Scholar] [CrossRef]
- Herreman, L.; Nommensen, P.; Pennings, B.; Laus, M.C. Comprehensive overview of the quality of plant- and animal-sourced proteins based on the digestible indispensable amino acid score. Food Sci. Nutr. 2020, 8, 5379–5391. [Google Scholar] [CrossRef]
- Grover, Z.; Ee, L.C. Protein energy malnutrition. Pediatr. Clin. N. Am. 2009, 56, 1055–1068. [Google Scholar] [CrossRef] [PubMed]
- Australian Health Survey: Usual Nutrient Intakes. Available online: https://www.abs.gov.au/statistics/health/health-conditions-and-risks/usual-nutrient-intakes/latest-release#macronutrients (accessed on 11 April 2025).
- Morgan, P.T.; Carson, B.P.; Witard, O.C. Dietary protein considerations in a sustainable and ageing world: A narrative review with a focus on greenhouse gas emissions and skeletal muscle remodelling and maintenance. BMC Musculoskelet. Disord. 2024, 25, 1030. [Google Scholar] [CrossRef] [PubMed]
- Li, S.-Y.; Lu, Z.-H.; Leung, J.C.S.; Kwok, T.C.Y. Association of dietary protein intake, inflammation with muscle mass, physical performance and incident sarcopenia in Chinese community-dwelling older adults. J. Nutr. Health Aging 2024, 28, 100163. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Fernández, A.; Caballero, F.F.; Yévenes-Briones, H.; Struijk, E.A.; Baylin, A.; Fung, T.T.; Lopez-Garcia, E. Plant and animal protein intake and transitions from multimorbidity to frailty and mortality in older adults. J. Cachexia Sarcopenia Muscle 2025, 16, e13729. [Google Scholar] [CrossRef]
- Beal, T.; Manohar, S.; Miachon, L.; Fanzo, J. Nutrient-dense foods and diverse diets are important for ensuring adequate nutrition across the life course. Proc. Natl. Acad. Sci. USA 2024, 121, e2319007121. [Google Scholar] [CrossRef]
- Tedeschi, L.O.; Beauchemin, K.A. Galyean appreciation club review: A holistic perspective of the societal relevance of beef production and its impacts on climate change. J. Anim. Sci. 2023, 101, skad024. [Google Scholar] [CrossRef]
- Givens, D.I. Animal board invited review: Dietary transition from animal to plant-derived foods: Are there risks to health? Animal 2024, 18, 101263. [Google Scholar] [CrossRef]
- Drewnowski, A. Perspective: The place of pork meat in sustainable healthy diets. Adv. Nutr. 2024, 15, 100213. [Google Scholar] [CrossRef]
- Beal, T. Big environmental gains from small dietary tweaks. Nat. Food 2023, 4, 935–936. [Google Scholar] [CrossRef]
- Mchiza, Z.J.; Ortenzi, F.; Parker, W.-A. Editorial: Nutrient density: Evidence of multisectoral approaches for improved nutrition. Front. Nutr. 2024, 11, 1542624. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Dou, Z.; Feng, S.; Zhang, Y.; Ma, L.; Zou, C.; Bai, Z.; Lakshmanan, P.; Shi, X.; Liu, D.; et al. Global food nutrients analysis reveals alarming gaps and daunting challenges. Nat. Food 2023, 4, 1007–1017. [Google Scholar] [CrossRef] [PubMed]
- Ridoutt, B. An alternative nutrient rich food index (NRF-ai) incorporating prevalence of inadequate and excessive nutrient intake. Foods 2021, 10, 3156. [Google Scholar] [CrossRef]
- Tukker, A.; Goldbohm, R.A.; de Koning, A.; Verheijden, M.; Kleijn, R.; Wolf, O.; Dominguez, I.P.; Rueda-Cantuche, J.M. Environmental impacts of changes to healthier diets in Europe. Ecol. Econ. 2011, 70, 1776–1788. [Google Scholar] [CrossRef]
- Aleksandrowicz, L.; Green, R.; Joy, E.J.M.; Smith, P.; Haines, A. The impacts of dietary change on greenhouse gas emissions, land use, water use, and health: A systematic review. PLoS ONE 2016, 11, e0165797. [Google Scholar] [CrossRef]
- Wilson, N.; Cleghorn, C.L.; Cobiac, L.J.; Mizdrak, A.; Nghiem, N. Achieving sustainable and healthy diets: A review of the results of recent mathematical optimization studies. Adv. Nutr. 2019, 10, S389–S403. [Google Scholar] [CrossRef]
- Clark, M.A.; Springmann, M.; Hill, J.; Tilman, D. Multiple health and environmental impacts of foods. Proc. Natl. Acad. Sci. USA 2019, 116, 23357–23362. [Google Scholar] [CrossRef]
- Rabès, A.; Seconda, L.; Langevin, B.; Allès, B.; Touvier, M.; Hercberg, S.; Lairon, D.; Baudry, J.; Pointereau, P.; Kesse-Guyot, E. Greenhouse gas emissions, energy demand and land use associated with omnivorous, pesco-vegetarian, vegetarian, and vegan diets accounting for farming practices. Sustain. Prod. Consum. 2020, 22, 138–146. [Google Scholar] [CrossRef]
- Ruett, J.; Hennes, L.; Teubler, J.; Braun, B. How compatible are Western European dietary patterns to climate targets? Accounting for uncertainty of life cycle assessments by applying a probabilistic approach. Sustainability 2022, 14, 14449. [Google Scholar] [CrossRef]
- Jaisli, I.; Brunori, G. Is there a future for livestock in a sustainable food system? Efficiency, sufficiency, and consistency strategies in the food-resource nexus. J. Agric. Food Res. 2024, 18, 101496. [Google Scholar] [CrossRef]
- Jenkins, W.M.N.; Trindade, L.M.; Pyett, S.; van Mierlo, B.; Welch, D.; van Zanten, H.H.E. Will the protein transition lead to sustainable food systems? Glob. Food Secur. 2024, 43, 100809. [Google Scholar] [CrossRef]
- Drewnowski, A.; Hooker, K. The protein transition: What determines the animal-to-plant (A:P) protein ratios in global diets. Front. Nutr. 2025, 12, 1518793. [Google Scholar] [CrossRef] [PubMed]
- Fulgoni, V.L., III; Agarwal, S.; Marinangeli, C.P.F.; Miller, K. Impact of plant protein intakes on nutrient adequacy in the US. Nutrients 2024, 16, 1158. [Google Scholar] [CrossRef]
- Huppertz, T.; Blom, L.; van Est, L.; Peters, S. Exploring nutrient-adequate sustainable diet scenarios that are plant-based but animal-optimized. Nutrients 2025, 17, 343. [Google Scholar] [CrossRef] [PubMed]
- Leonard, U.M.; Kiely, M.E. Can micronutrient requirements be met by diets from sustainable sources: Outcomes of dietary modelling studies using diet optimization. Ann. Med. 2024, 56, 2389295. [Google Scholar] [CrossRef] [PubMed]
- Frank, S.M.; Jaacks, L.M.; Adair, L.S.; Avery, C.L.; Meyer, K.; Rose, D.; Taillie, L.S. Adherence to the Planetary Health Diet Index and correlation with nutrients of public health concern: An analysis of NHANES 2003–2018. Am. J. Clin. Nutr. 2024, 119, 384–392. [Google Scholar] [CrossRef]
- Gil, M.; Rudy, M.; Duma-Kocan, P.; Stanisławczyk, R.; Krajewska, A.; Dziki, D.; Hassoon, W.H. Sustainability of alternatives to animal protein sources, a comprehensive review. Sustainability 2024, 16, 7701. [Google Scholar] [CrossRef]
- Leonard, U.M.; Leydon, C.L.; Arranz, E.; Kiely, M.E. Impact of consuming an environmentally protective diet on micronutrients: A systematic literature review. Am. J. Clin. Nutr. 2024, 119, 927–948. [Google Scholar] [CrossRef]
- Nordhagen, S. Animal-source foods for nutrition, environment and society: Finding a balance. Proc. Nutr. Soc. 2025, 6, 1–11. [Google Scholar] [CrossRef]
- Qaim, M.; Barrangou, R.; Ronald, P.C. Sustainability of animal-sourced foods and plant-based alternatives. Proc. Natl. Acad. Sci. USA 2024, 121, e2400495121. [Google Scholar] [CrossRef]
- Soh, B.X.P.; Smith, N.W.; von Hurst, P.R.; McNabb, W.C. Evaluation of protein adequacy from plant-based dietary scenarios in simulation studies: A narrative review. J. Nutr. 2024, 154, 300–313. [Google Scholar] [CrossRef] [PubMed]
- Viroli, G.; Kalmpourtzidou, A.; Cena, H. Exploring benefits and barriers of plant-based diets: Health, environmental impact, food accessibility and acceptability. Nutrients 2023, 15, 4723. [Google Scholar] [CrossRef] [PubMed]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef] [PubMed]
- Beal, T.; Ortenzi, F.; Fanzo, J. Estimated micronutrient shortfalls of the EAT-Lancet planetary health diet. Lancet Planet. Health 2023, 7, e233–e237. [Google Scholar] [CrossRef]
- Stanton, A.V. Plant-based diets—Impacts of consumption of little or no animal-source foods on human health. Front. Nutr. 2024, 11, 1423925. [Google Scholar] [CrossRef]
- Stanton, A.V. Unacceptable use of substandard metrics in policy decisions which mandate large reductions in animal-source foods. NPJ Sci. Food 2024, 8, 10. [Google Scholar] [CrossRef]
- Tucci, M.; Martini, D.; Vinelli, V.; Biscott, P.; Porrini, M.; Del Bo’, C.; Riso, P. The MED_EAT-IT approach: A modelling study to develop feasible, sustainable and nutritionally targeted dietary patterns based on the Planetary health diet. Curr. Res. Food Sci. 2024, 8, 100765. [Google Scholar] [CrossRef]
- Uriza-Pinzón, J.P.; Verstraete, F.F.; Franco, O.H.; Artola Arita, V.; Nicolaou, M.; Van der Schouw, Y.T. Planetary Health Diet compared to Dutch Dietary Guidelines: Nutritional content and adequacy. Nutrients 2024, 16, 2219. [Google Scholar] [CrossRef]
- van de Locht, K.; Perrar, I.; Paris, J.M.G.; Schnermann, M.E.; Oluwagbemigun, K.; Alexy, U.; Nöthlings, U. Environmental sustainability of diets among children and adolescents in the German DONALD cohort study: Age and time trends, and nutrient adequacy. Am. J. Clin. Nutr. 2024, 120, 92–101. [Google Scholar] [CrossRef]
- Gu, X.; Bui, L.P.; Wang, F.; Wang, D.D.; Springmann, M.; Willett, W.C. Global adherence to a healthy and sustainable diet and potential reduction in premature death. Proc. Natl. Acad. Sci. USA 2024, 121, e2319008121. [Google Scholar] [CrossRef]
- Kavanaugh, M.; Rodgers, D.; Rodriguez, N.; Leroy, F. Considering the nutritional benefits and health implications of red meat in the era of meatless initiatives. Front. Nutr. 2025, 12, 1525011. [Google Scholar] [CrossRef]
- Klapp, A.L.; Wyma, N.; Alessandrini, R.; Ndinda, C.; Perez-Cueto, A.; Risius, A. Recommendations to address the shortfalls of the EAT-Lancet planetary health diet from a plant-forward perspective. Lancet Planet. Health 2025, 9, e23–e33. [Google Scholar] [CrossRef]
- Pan, W.-H.; Wu, S.-Y.; Chang, P.-C. Is nutrient quality of the locally-existing, EAT-Lancet-like plant-based diet better or worse than the average diet in Taiwan? An example of local translation. Nutrients 2024, 16, 2775. [Google Scholar] [CrossRef]
- Santos-Guzmán, A.; Rivera, J.A.; Unar-Munguía, M.; Ramírez-Silva, I. Addressing infant and young child feeding recommendations from a planetary health perspective. Adv. Nutr. 2024, 15, 100303. [Google Scholar] [CrossRef] [PubMed]
- Elliott, P.S.; Devine, L.D.; Gibney, E.R.; O’Sullivan, A.M. What factors influence sustainable and healthy diet consumption? A review and synthesis of literature within the university setting and beyond. Nutr. Res. 2024, 126, 23–45. [Google Scholar] [CrossRef] [PubMed]
- Vieux, F.; Rémond, D.; Peyraud, J.L.; Darmon, N. Approximately half of total protein intake by adults must be animal-based to meet nonprotein, nutrient-based recommendations, with variations due to age and sex. J. Nutr. 2022, 152, 2514–2525. [Google Scholar] [CrossRef] [PubMed]
- Ridoutt, B. Diet and environmental sustainability: A review of Australian evidence. Dietetics 2025, 4, 5. [Google Scholar] [CrossRef]
- Ridoutt, B.G.; Baird, D.; Anastasiou, K.; Hendrie, G.A. Diet quality and water scarcity: Evidence from a large Australian population health survey. Nutrients 2019, 11, 1846. [Google Scholar] [CrossRef]
- Ridoutt, B.; Anastasiou, K.; Baird, D.; Navarro Garcia, J.; Hendrie, G. Cropland footprints of Australian dietary choices. Nutrients 2020, 12, 1212. [Google Scholar] [CrossRef]
- Ridoutt, B.; Baird, D.; Hendrie, G.A. Diets within environmental limits: The climate impact of current and recommended Australian diets. Nutrients 2021, 13, 1122. [Google Scholar] [CrossRef]
- Ridoutt, B.; Baird, D.; Navarro, J.; Hendrie, G.A. Pesticide toxicity footprints of Australian dietary choices. Nutrients 2021, 13, 4314. [Google Scholar] [CrossRef]
- Ridoutt, B.; Baird, D.; Hendrie, G.A. Diets with higher vegetable intake and lower environmental impact: Evidence from a large Australian population health survey. Nutrients 2022, 14, 1517. [Google Scholar] [CrossRef] [PubMed]
- Australian Bureau of Statistics. 4364.0.55.007—Australian Health Survey: Nutrition First Results—Foods and Nutrients, 2011–2012; Australian Bureau of Statistics: Canberra, Australia, 2014. [Google Scholar]
- Australian Bureau of Statistics. 4363.0.55.001—Australian Health Survey: Users’ Guide, 2011–2013; Australian Bureau of Statistics: Canberra, Australia, 2013. Available online: https://www.abs.gov.au/ausstats/abs@.nsf/Lookup/4363.0.55.001main+features12011-13# (accessed on 15 July 2025).
- National Health and Medical Research Council. Australian Dietary Guidelines Summary; National Health and Medical Research Council: Canberra, Australia, 2013. [Google Scholar]
- Nutrient Reference Values for Australia and New Zealand. Available online: https://www.nrv.gov.au/introduction (accessed on 4 September 2019).
- Ridoutt, B.G.; Baird, D.; Anastasiou, K.; Hendrie, G.A. An assessment of the water use associated with Australian diets using a planetary boundary framework. Public Health Nutr. 2021, 24, 1570–1575. [Google Scholar] [CrossRef] [PubMed]
- Mayberry, D. Red Meat Greenhouse Gas Emissions Update 2021; Meat and Livestock Australia: Sydney, Australia, 2024; Available online: https://www.mla.com.au/contentassets/5466704f42844b80b1ebea0cd40dacd5/red-meat-emissions-update-2021.pdf (accessed on 22 July 2024).
- Ridoutt, B. Equivalence—A useful yet complex concept in natural resource science. Resources 2024, 13, 145. [Google Scholar] [CrossRef]
- Ridoutt, B.G.; Baird, D.; Hendrie, G.A. Diets within planetary boundaries: What is the potential of dietary change alone? Sustain. Prod. Consum. 2021, 28, 802–810. [Google Scholar] [CrossRef]
- Pizzol, M.; Laurent, A.; Sala, S.; Weidema, B.; Verones, F.; Koffler, C. Normalisation and weighting in life cycle assessment: Quo vadis? Int. J. Life Cycle Assess. 2017, 22, 853–866. [Google Scholar] [CrossRef]
- Golley, R.K.; Hendrie, G.A. The Dietary Guidelines Index for children and adolescents: What is the impact of the new dietary guidelines? Nutr. Diet. 2014, 71, 210–212. [Google Scholar] [CrossRef]
- Vieux, F.; Darmon, N.; Touazi, D.; Soler, L.G. Greenhouse gas emissions of self-selected individual diets in France: Changing the diet structure or consuming less? Ecol. Econ. 2012, 75, 91–101. [Google Scholar] [CrossRef]
- Food Standards Australia New Zealand. Australian Food Composition Database. Available online: https://www.foodstandards.gov.au/science/monitoringnutrients/afcd/pages/default.aspx (accessed on 15 February 2021).
- Hendrie, G.A.; Baird, D.; Ridoutt, B.; Hadjikakou, M.; Noakes, M. Overconsumption of energy and excessive discretionary food intake inflates dietary greenhouse gas emissions in Australia. Nutrients 2016, 8, 690. [Google Scholar] [CrossRef]
- Overweight and Obesity. Available online: https://www.aihw.gov.au/reports/overweight-obesity/overweight-and-obesity/contents/about (accessed on 2 May 2025).
- Simon, W.; Hijbeek, R.; Frehner, A.; Cardinaals, R.; Talsma, E.F.; Van Zanten, H. 40:60: The Optimal Ratio Between Animal and Plant-Based Proteins for Health and Environment. Preprint 2023. (Version 1). [Google Scholar] [CrossRef]
- Fouillet, H.; Dussiot, A.; Perraud, E.; Wang, J.; Huneau, J.-F.; Kesse-Guyot, E.; Mariotti, F. Plant to animal protein ratio in the diet: Nutrient adequacy, long-term health and environmental pressure. Front. Nutr. 2023, 10, 1178121. [Google Scholar] [CrossRef] [PubMed]
- Grasso, A.C.; Besselink, J.J.F.; Tyszler, M.; Bruins, M.J. The potential of food fortification as an enabler of more environmentally sustainable, nutritionally adequate diets. Nutrients 2023, 15, 2473. [Google Scholar] [CrossRef] [PubMed]
- Messina, M.; Duncan, A.M.; Glenn, A.J.; Mariotti, F. Perspective: Plant-based meat alternatives can help facilitate and maintain a lower animal to plant protein intake ratio. Adv. Nutr. 2023, 14, 392–405. [Google Scholar] [CrossRef] [PubMed]
- Liyanapathirana, N.N.; Grech, A.; Li, M.; Malik, A.; Lenzen, M.; Raubenheimer, D. Nutrient-sensitive approach for sustainability assessment of different dietary patterns in Australia. Am. J. Clin. Nutr. 2022, 115, 1048–1058. [Google Scholar] [CrossRef]
- Ridoutt, B.G.; Baird, D.; Hendrie, G.A. The importance of protein variety in a higher quality and lower environmental impact dietary pattern. Public Health Nutr. 2022, 25, 3583–3588. [Google Scholar] [CrossRef]
- Larvie, D.Y.; Armah, S.M. Estimating phytate intake from the US diet using the NHANES data. J. Food Compos. Anal. 2021, 102, 104050. [Google Scholar] [CrossRef]
- Ma, T.T.; Sun, Q.; Ba, G.N.; Wu, X.; Pei, X.W.; Sun, C.; Tan, S.J.; Wan, Z.X. Effects of low phytate soymilk intake on calcium, iron and zinc status in male Sprague-Dawley rats. J. Funct. Foods 2023, 106, 105595. [Google Scholar] [CrossRef]
- Amirabdollahian, F.; Ash, R. An estimate of phytate intake and molar ratio of phytate to zinc in the diet of the people in the United Kingdom. Public Health Nutr. 2010, 13, 1380–1388. [Google Scholar] [CrossRef]
- Schlemmer, U.; Frølich, W.; Prieto, R.M.; Grases, F. Phytate in foods and significance for humans: Food sources, intake, processing, bioavailability, protective role and analysis. Mol. Nutr. Food Res. 2009, 53 (Suppl. S2), S330–S375. [Google Scholar] [CrossRef]
- Grech, A.; Hasick, M.; Gemming, L.; Rangan, A. Energy misreporting is more prevalent for those of lower socio-economic status and is associated with lower reported intake of discretionary foods. Br. J. Nutr. 2020, 125, 1291–1298. [Google Scholar] [CrossRef]
- Ridoutt, B.G.; Hendrie, G.A.; Noakes, M. Dietary strategies to reduce environmental impact: A critical review of the evidence base. Adv. Nutr. 2017, 8, 933–946. [Google Scholar] [CrossRef]
- Hall, K.D.; Guo, J.; Dore, M.; Chow, C.C. The progressive increase of food waste in America and its environmental impact. PLoS ONE 2009, 4, e7940. [Google Scholar] [CrossRef]
Characteristic | HQLI Subgroup | Population Estimate | p-Value |
---|---|---|---|
Diet-quality score (out of 100) | 58.5 | 42.6 | <0.001 |
Climate footprint (kg CO2-e day−1) | 1.27 | 2.06 | <0.001 |
Water-scarcity footprint (L-e day−1) | 254 | 394 | <0.001 |
Cropland-scarcity footprint (m2y-e day−1) | 4.47 | 6.89 | <0.001 |
Pesticide-toxicity footprint (points day−1) | 13.7 | 25.1 | <0.001 |
BMI category (%) | <0.001 | ||
Underweight | 1.0 | 1.5 | |
Normal range | 27.9 | 30.7 | |
Overweight | 29.7 | 31.3 | |
Obese | 23.6 | 21.9 | |
Dairy avoidance (%) | 5.7 | 4.7 | 0.022 |
Activity level (past week) (%) | 0.056 | ||
Inactive | 18.2 | 20.4 | |
Insufficiently active | 28.3 | 26.4 | |
Sufficiently active | 52.7 | 52.5 | |
Smoking status (%) | <0.001 | ||
Current daily smoker | 11.2 | 15.8 | |
Current occasional smoker | 1.2 | 1.9 | |
Ex-smoker | 29.4 | 30.8 | |
Never smoked | 58.1 | 51.6 | |
Level of highest education (%) | 0.002 | ||
Postgraduate | 9.1 | 8.8 | |
Bachelor | 18.5 | 18.2 | |
Certificate/Diploma | 30.8 | 34.8 | |
Without post-school qualification | 39.6 | 36.7 | |
Socio-Economic Index (%) | 0.011 | ||
Lowest 20% | 18.0 | 17.9 | |
Second quintile | 21.6 | 20.4 | |
Third quintile | 20.5 | 20.0 | |
Fourth quintile | 20.5 | 19.3 | |
Highest 20% | 19.5 | 22.3 |
Nutrient | HQLI Subgroup | Population Estimate | Difference (%) 1 |
---|---|---|---|
LCn3 (mg MJ−1) 2 | 48.3 | 34.6 | 39.5 ** |
Dietary fiber (g MJ−1) | 3.6 | 2.7 | 30.8 ** |
Dietary folate equivalents (μg MJ−1) | 93.9 | 74.4 | 26.3 ** |
Retinol equivalents (μg MJ−1) | 126.9 | 100.8 | 25.8 ** |
Thiamin (B1) (mg MJ−1) | 0.23 | 0.18 | 23.1 ** |
Iron (mg MJ−1) | 1.58 | 1.31 | 20.7 ** |
Zinc (mg MJ−1) | 1.54 | 1.30 | 18.6 ** |
Magnesium (mg MJ−1) | 46.8 | 40.5 | 15.7 ** |
Potassium (mg MJ−1) | 397 | 346 | 14.8 ** |
Protein (g MJ−1) | 12.1 | 10.7 | 12.6 ** |
Vitamin E (mg MJ−1) | 1.37 | 1.22 | 12.3 ** |
Iodine (μg MJ−1) | 23.3 | 20.8 | 12.3 ** |
Riboflavin (B2) (mg MJ−1) | 0.25 | 0.22 | 12.0 ** |
Niacin (B3) equivalents (mg MJ−1) | 5.45 | 4.89 | 11.6 ** |
Caffeine (mg MJ−1) | 24.0 | 21.7 | 10.8 ** |
Selenium (μg MJ−1) | 11.8 | 10.8 | 9.2 ** |
Phosphorus (mg MJ−1) | 189 | 173 | 9.2 ** |
Calcium (mg MJ−1) | 105 | 96 | 8.9 ** |
Alpha-linolenic acid (g MJ−1) | 0.17 | 0.16 | 7.7 ** |
Vitamin B12 (μg MJ−1) | 0.57 | 0.53 | 6.3 ** |
Vitamin C (mg MJ−1) | 13.3 | 12.5 | 6.3 ** |
Vitamin B6 (mg MJ−1) | 0.19 | 0.18 | 5.2 ** |
Total carbohydrates (g MJ−1) | 27.1 | 26.2 | 3.6 ** |
Polyunsaturated fatty acids (g MJ−1) | 1.34 | 1.30 | 2.9 ** |
Linoleic acid (g MJ−1) | 1.08 | 1.08 | 0.7 |
Sodium (mg MJ−1) | 285 | 287 | −0.8 |
Monounsaturated fatty acids (g MJ−1) | 3.07 | 3.18 | −3.5 ** |
Total fats (g MJ−1) | 7.9 | 8.3 | −5.5 ** |
Sugars (g MJ−1) | 11.1 | 11.9 | −7.4 ** |
Trans-fatty acids (mg MJ−1) | 136 | 156 | −13.2 ** |
Saturated fatty acids (g MJ−1) | 2.69 | 3.11 | −13.4 ** |
Alcohol (g MJ−1) | 0.47 | 1.56 | −69.9 ** |
Animal/Plant Protein Ratio | HQLI Diets (%) | Total Protein (g) | Total Energy Intake (kJ) |
---|---|---|---|
<20% animal protein | 6.2 | 66.8 | 7804 |
20 to <40% animal protein | 16.1 | 65.3 | 7494 |
40 to <60% animal protein | 31.0 | 80.6 | 7512 |
60 to <80% animal protein | 38.1 | 96.7 | 7246 |
80% animal protein and above | 8.5 | 115.4 | 6385 |
Food Group 2 | % Animal Protein | ||||
---|---|---|---|---|---|
<20 | 20 to <40 | 40 to <60 | 60 to <80 | 80+ | |
Meats and alternatives | 1.30 | 0.89 | 1.72 | 2.85 | 3.96 |
Seafood | 0.00 | 0.13 | 0.19 | 0.39 | 0.41 |
Beef and lamb | 0.02 | 0.17 | 0.45 | 1.41 | 2.23 |
Poultry | 0.02 | 0.10 | 0.41 | 0.60 | 0.93 |
Pork | 0.02 | 0.02 | 0.13 | 0.09 | 0.07 |
Eggs | 0.02 | 0.05 | 0.15 | 0.16 | 0.20 |
Other plant choices | 1.22 | 0.43 | 0.40 | 0.21 | 0.14 |
Dairy and alternatives | 0.72 | 0.96 | 1.19 | 1.18 | 1.00 |
Nutrient | % Animal Protein | ||||
---|---|---|---|---|---|
<20 | 20 to <40 | 40 to <60 | 60 to <80 | 80+ | |
Niacin (B3) 3 | 98.7 | 99.6 | 99.7 | 100.0 | 100.0 |
Phosphorus | 94.0 | 95.2 | 97.7 | 99.8 | 99.9 |
Protein | 75.6 | 85.3 | 93.8 | 98.6 | 99.8 |
Folate 4 | 89.5 | 81.4 | 88.1 | 88.5 | 70.5 |
Iron | 86.2 | 83.3 | 79.6 | 87.2 | 81.4 |
Vitamin C | 83.5 | 87.7 | 85.1 | 81.8 | 68.3 |
Iodine | 66.9 | 75.9 | 82.3 | 82.0 | 71.4 |
Vitamin B12 | 39.7 | 58.8 | 84.6 | 92.3 | 95.6 |
Riboflavin (B2) | 62.5 | 64.5 | 81.4 | 83.2 | 76.2 |
Selenium | 56.0 | 57.4 | 77.8 | 86.6 | 86.6 |
Thiamin (B1) | 67.9 | 67.1 | 70.0 | 73.3 | 46.9 |
Magnesium | 74.9 | 60.1 | 58.3 | 55.9 | 38.9 |
Zinc | 46.0 | 45.0 | 52.4 | 68.5 | 74.3 |
Vitamin A 5 | 55.7 | 63.0 | 54.6 | 55.3 | 35.3 |
Vitamin B6 | 41.1 | 43.9 | 45.5 | 51.4 | 45.2 |
Calcium | 26.1 | 25.9 | 35.8 | 32.9 | 19.4 |
Average | 66.5 | 68.4 | 74.2 | 77.3 | 69.4 |
Nutrient | % Animal Protein | ||||
---|---|---|---|---|---|
<20 | 20 to <40 | 40 to <60 | 60 to <80 | 80+ | |
Niacin (B3) 3 | 99.8 | 99.9 | 100.0 | 100.0 | 100.0 |
Phosphorus | 98.5 | 99.2 | 99.7 | 99.9 | 100.0 |
Protein | 95.5 | 96.7 | 99.2 | 99.8 | 100.0 |
Folate 4 | 97.3 | 95.8 | 96.5 | 96.3 | 89.6 |
Iron | 95.5 | 95.9 | 95.1 | 97.1 | 95.3 |
Vitamin C | 89.1 | 95.5 | 93.9 | 93.5 | 87.4 |
Iodine | 87.6 | 93.0 | 95.5 | 95.3 | 90.1 |
Vitamin B12 | 64.8 | 84.5 | 95.0 | 98.0 | 99.5 |
Riboflavin (B2) | 90.0 | 89.9 | 95.1 | 95.9 | 94.1 |
Selenium | 86.5 | 90.4 | 95.4 | 97.7 | 97.0 |
Thiamin (B1) | 93.8 | 92.5 | 92.9 | 93.7 | 82.1 |
Magnesium | 93.7 | 90.5 | 91.1 | 91.4 | 84.4 |
Zinc | 85.2 | 82.7 | 87.8 | 92.2 | 93.2 |
Vitamin A 5 | 79.6 | 85.9 | 83.0 | 81.8 | 68.4 |
Vitamin B6 | 80.3 | 79.6 | 82.6 | 86.2 | 82.5 |
Calcium | 68.9 | 69.9 | 74.5 | 73.1 | 61.3 |
Average | 87.9 | 90.1 | 92.3 | 93.3 | 89.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ridoutt, B.; Baird, D.; Hendrie, G.A. Protein Source and Micronutrient Adequacy in Australian Adult Diets with Higher Diet Quality Score and Lower Environmental Impacts. Dietetics 2025, 4, 35. https://doi.org/10.3390/dietetics4030035
Ridoutt B, Baird D, Hendrie GA. Protein Source and Micronutrient Adequacy in Australian Adult Diets with Higher Diet Quality Score and Lower Environmental Impacts. Dietetics. 2025; 4(3):35. https://doi.org/10.3390/dietetics4030035
Chicago/Turabian StyleRidoutt, Bradley, Danielle Baird, and Gilly A. Hendrie. 2025. "Protein Source and Micronutrient Adequacy in Australian Adult Diets with Higher Diet Quality Score and Lower Environmental Impacts" Dietetics 4, no. 3: 35. https://doi.org/10.3390/dietetics4030035
APA StyleRidoutt, B., Baird, D., & Hendrie, G. A. (2025). Protein Source and Micronutrient Adequacy in Australian Adult Diets with Higher Diet Quality Score and Lower Environmental Impacts. Dietetics, 4(3), 35. https://doi.org/10.3390/dietetics4030035