Chrononutrition Patterns in People Who Attempted Weight Loss in the Past Year: A Descriptive Analysis of the National Health and Nutrition Examination Survey (NHANES) 2017–2020 Pre-Pandemic
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Diet Assessment
2.3. Weight Loss Attempt
2.4. Adiposity
2.5. Covariates and Demographic Characteristics
2.6. Statistical Analysis
3. Results
3.1. Chrononutrition Profiles
3.2. Chrononutrition Patterns by Weight Change Status
3.3. Chrononutrition Patterns by Obesity Status
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Emmerich, S.D.; Fryar, C.D.; Stierman, B.; Ogden, C.L. Obesity and Severe Obesity Prevalence in Adults: United States, August 2021–August 2023; NCHS Data Brief; National Center for Health Statistics: Hyattsville, MD, USA, 2024. [Google Scholar] [CrossRef]
- Ong, K.L.; Stafford, L.K.; McLaughlin, S.A.; Boyko, E.J.; Vollset, S.E.; Smith, A.E.; Dalton, B.E.; Duprey, J.; Cruz, J.A.; Hagins, H.; et al. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: A systematic analysis for the Global Burden of Disease Study 2021. Lancet 2023, 402, 203–234. [Google Scholar] [CrossRef] [PubMed]
- Curry, S.J.; Krist, A.H.; Owens, D.K.; Barry, M.J.; Caughey, A.B.; Davidson, K.W.; Doubeni, C.A.; Epling, J.W., Jr.; Grossman, D.C.; Kemper, A.R.; et al. Behavioral Weight Loss Interventions to Prevent Obesity-Related Morbidity and Mortality in Adults: US Preventive Services Task Force Recommendation Statement. JAMA 2018, 320, 1163–1171. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; You, D.; Zeng, F.; Feng, X.; Astell-Burt, T.; Duan, S.; Qi, L. Trends in Self-perceived Weight Status, Weight Loss Attempts, and Weight Loss Strategies Among Adults in the United States, 1999-2016. JAMA Netw. Open 2019, 2, e1915219. [Google Scholar] [CrossRef] [PubMed]
- Jensen, M.D.; Ryan, D.H.; Apovian, C.M.; Ard, J.D.; Comuzzie, A.G.; Donato, K.A.; Hu, F.B.; Hubbard, V.S.; Jakicic, J.M.; Kushner, R.F.; et al. 2013 AHA/ACC/TOS guideline for the management of overweight and obesity in adults: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and The Obesity Society. J. Am. Coll. Cardiol. 2014, 63, 2985–3023. [Google Scholar] [CrossRef]
- Garber, C.E.; Blissmer, B.; Deschenes, M.R.; Franklin, B.A.; Lamonte, M.J.; Lee, I.M.; Nieman, D.C.; Swain, D.P. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Med. Sci. Sports Exerc. 2011, 43, 1334–1359. [Google Scholar] [CrossRef]
- Boege, H.L.; Bhatti, M.Z.; St-Onge, M.P. Circadian rhythms and meal timing: Impact on energy balance and body weight. Curr. Opin. Biotechnol. 2021, 70, 1–6. [Google Scholar] [CrossRef]
- Poggiogalle, E.; Jamshed, H.; Peterson, C.M. Circadian regulation of glucose, lipid, and energy metabolism in humans. Metabolism 2018, 84, 11–27. [Google Scholar] [CrossRef]
- Kessler, K.; Pivovarova-Ramich, O. Meal Timing, Aging, and Metabolic Health. Int. J. Mol. Sci. 2019, 20, 1911. [Google Scholar] [CrossRef]
- Flanagan, A.; Bechtold, D.A.; Pot, G.K.; Johnston, J.D. Chrono-nutrition: From molecular and neuronal mechanisms to human epidemiology and timed feeding patterns. J. Neurochem. 2021, 157, 53–72. [Google Scholar] [CrossRef]
- Wehrens, S.M.T.; Christou, S.; Isherwood, C.; Middleton, B.; Gibbs, M.A.; Archer, S.N.; Skene, D.J.; Johnston, J.D. Meal Timing Regulates the Human Circadian System. Curr. Biol. 2017, 27, 1768–1775.e3. [Google Scholar] [CrossRef]
- Roenneberg, T.; Kuehnle, T.; Juda, M.; Kantermann, T.; Allebrandt, K.; Gordijn, M.; Merrow, M. Epidemiology of the human circadian clock. Sleep Med. Rev. 2007, 11, 429–438. [Google Scholar] [CrossRef] [PubMed]
- Cagampang, F.R.; Bruce, K.D. The role of the circadian clock system in nutrition and metabolism. Br. J. Nutr. 2012, 108, 381–392. [Google Scholar] [CrossRef]
- Katsi, V.; Papakonstantinou, I.P.; Soulaidopoulos, S.; Katsiki, N.; Tsioufis, K. Chrononutrition in Cardiometabolic Health. J. Clin. Med. 2022, 11, 296. [Google Scholar] [CrossRef] [PubMed]
- Almoosawi, S.; Vingeliene, S.; Gachon, F.; Voortman, T.; Palla, L.; Johnston, J.D.; Van Dam, R.M.; Darimont, C.; Karagounis, L.G. Chronotype: Implications for Epidemiologic Studies on Chrono-Nutrition and Cardiometabolic Health. Adv. Nutr. 2019, 10, 30–42. [Google Scholar] [CrossRef]
- Hofstra, W.A.; de Weerd, A.W. How to assess circadian rhythm in humans: A review of literature. Epilepsy Behav. 2008, 13, 438–444. [Google Scholar] [CrossRef] [PubMed]
- Garaulet, M.; Gómez-Abellán, P. Timing of food intake and obesity: A novel association. Physiol. Behav. 2014, 134, 44–50. [Google Scholar] [CrossRef]
- Jakubowicz, D.; Barnea, M.; Wainstein, J.; Froy, O. High caloric intake at breakfast vs. dinner differentially influences weight loss of overweight and obese women. Obesity 2013, 21, 2504–2512. [Google Scholar] [CrossRef]
- Lopez-Minguez, J.; Gómez-Abellán, P.; Garaulet, M. Timing of Breakfast, Lunch, and Dinner. Effects on Obesity and Metabolic Risk. Nutrients 2019, 11, 2624. [Google Scholar] [CrossRef]
- Gu, C.; Brereton, N.; Schweitzer, A.; Cotter, M.; Duan, D.; Børsheim, E.; Wolfe, R.R.; Pham, L.V.; Polotsky, V.Y.; Jun, J.C. Metabolic Effects of Late Dinner in Healthy Volunteers-A Randomized Crossover Clinical Trial. J. Clin. Endocrinol. Metab. 2020, 105, 2789–2802. [Google Scholar] [CrossRef]
- Yoshida, J.; Eguchi, E.; Nagaoka, K.; Ito, T.; Ogino, K. Association of night eating habits with metabolic syndrome and its components: A longitudinal study. BMC Public Health 2018, 18, 1366. [Google Scholar] [CrossRef]
- Stierman, B.; Afful, J.; Carroll, M.D.; Chen, T.-C.; Davy, O.; Fink, S.; Fryar, C.D.; Gu, Q.; Hales, C.M.; Hughes, J.P. National Health and Nutrition Examination Survey 2017–March 2020 Prepandemic Data Files Development of Files and Prevalence Estimates for Selected Health Outcomes; National Center for Health Statistics: Hyattsville, MD, USA, 2021. [Google Scholar]
- Zipf, G.; Chiappa, M.; Porter, K.S.; Ostchega, Y.; Lewis, B.G.; Dostal, J. Health and Nutrition Examination Survey Plan and Operations, 1999–2010; National Center for Health Statistics: Hyattsville, MD, USA, 2013. [Google Scholar]
- MEC Interviewers Procedures Manual 2019–2020. Available online: https://wwwn.cdc.gov/nchs/nhanes/continuousnhanes/manuals.aspx?BeginYear=2019 (accessed on 30 January 2025).
- Kirkpatrick, S.I.; Reedy, J.; Krebs-Smith, S.M.; Pannucci, T.E.; Subar, A.F.; Wilson, M.M.; Lerman, J.L.; Tooze, J.A. Applications of the Healthy Eating Index for surveillance, epidemiology, and intervention research: Considerations and caveats. J. Acad. Nutr. Diet. 2018, 118, 1603–1621. [Google Scholar] [CrossRef] [PubMed]
- USPSTF. Weight Loss to Prevent Obesity-Related Morbidity and Mortality in Adults: Behavioral Interventions. 2018. Available online: https://www.uspreventiveservicestaskforce.org/uspstf/recommendation/obesity-in-adults-interventions (accessed on 26 February 2025).
- WHO. Physical Status: The Use and Interpretation of Anthropometry: Report of a WHO Expert Committee; World Health Organization: Geneva, Switzerland, 1995. [Google Scholar]
- Yi, H.; Li, M.; Dong, Y.; Gan, Z.; He, L.; Li, X.; Tao, Y.; Xia, Z.; Xia, Z.; Xue, Y. Nonlinear associations between the ratio of family income to poverty and all-cause mortality among adults in NHANES study. Sci. Rep. 2024, 14, 12018. [Google Scholar] [CrossRef]
- Duque, A.; Martínez, P.-J.; Giraldo, A.; Gualtero, D.F.; Ardila, C.-M.; Contreras, A.; Duarte, S.; Lafaurie, G.-I. Accuracy of cotinine serum test to detect the smoking habit and its association with periodontal disease in a multicenter study. Med. Oral Patol. Oral Y Cirugía Bucal 2017, 22, e425. [Google Scholar] [CrossRef]
- Snetselaar, L.G.; de Jesus, J.M.; DeSilva, D.M.; Stoody, E.E. Dietary guidelines for Americans, 2020–2025: Understanding the scientific process, guidelines, and key recommendations. Nutr. Today 2021, 56, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Piercy, K.L.; Troiano, R.P.; Ballard, R.M.; Carlson, S.A.; Fulton, J.E.; Galuska, D.A.; George, S.M.; Olson, R.D. The physical activity guidelines for Americans. JAMA 2018, 320, 2020–2028. [Google Scholar] [CrossRef]
- Lumley, T.; Lumley, M.T. Package ‘Survey’. 2020. Available online: https://cran.r-project.org/web/packages/survey/index.html (accessed on 25 February 2025).
- Sjoberg, D.D.; Whiting, K.; Curry, M.; Lavery, J.A.; Larmarange, J. Reproducible summary tables with the gtsummary package. R J. 2021, 13, 570–580. [Google Scholar] [CrossRef]
- Visser, I. depmix: An R-package for fitting mixture models on mixed multivariate data with Markov dependencies. R-Package Man. 2007, 39, 65. [Google Scholar]
- Hill, J.O.; Wyatt, H.R.; Peters, J.C. The Importance of Energy Balance. Eur. Endocrinol. 2013, 9, 111–115. [Google Scholar] [CrossRef]
- Chen, L.; Appel, L.J.; Loria, C.; Lin, P.H.; Champagne, C.M.; Elmer, P.J.; Ard, J.D.; Mitchell, D.; Batch, B.C.; Svetkey, L.P.; et al. Reduction in consumption of sugar-sweetened beverages is associated with weight loss: The PREMIER trial. Am. J. Clin. Nutr. 2009, 89, 1299–1306. [Google Scholar] [CrossRef]
- Farsijani, S.; Mao, Z.; Cauley, J.A.; Newman, A.B. Comprehensive assessment of chrononutrition behaviors among nationally representative adults: Insights from National Health and Nutrition Examination Survey (NHANES) data. Clin. Nutr. 2023, 42, 1910–1921. [Google Scholar] [CrossRef]
- Akbar, Z.; Shi, Z. Unfavorable Mealtime, Meal Skipping, and Shiftwork Are Associated with Circadian Syndrome in Adults Participating in NHANES 2005-2016. Nutrients 2024, 16, 1581. [Google Scholar] [CrossRef] [PubMed]
- Raji, O.E.; Kyeremah, E.B.; Sears, D.D.; St-Onge, M.P.; Makarem, N. Chrononutrition and Cardiometabolic Health: An Overview of Epidemiological Evidence and Key Future Research Directions. Nutrients 2024, 16, 2332. [Google Scholar] [CrossRef] [PubMed]
- Tsitsou, S.; Zacharodimos, N.; Poulia, K.A.; Karatzi, K.; Dimitriadis, G.; Papakonstantinou, E. Effects of Time-Restricted Feeding and Ramadan Fasting on Body Weight, Body Composition, Glucose Responses, and Insulin Resistance: A Systematic Review of Randomized Controlled Trials. Nutrients 2022, 14, 4778. [Google Scholar] [CrossRef] [PubMed]
- Rastogi, S.; Verma, N.; Raghuwanshi, G.S.; Atam, V.; Kumar Verma, D. The Impact of Time-Restricted Meal Intake on Glycemic Control and Weight Management in Type 2 Diabetes Mellitus Patients: An 18-Month Longitudinal Study. Cureus 2024, 16, e53680. [Google Scholar] [CrossRef]
- Mentzelou, M.; Papadopoulou, S.K.; Psara, E.; Voulgaridou, G.; Pavlidou, E.; Androutsos, O.; Giaginis, C. Chrononutrition in the prevention and management of metabolic disorders: A literature review. Nutrients 2024, 16, 722. [Google Scholar] [CrossRef]
- Schuppelius, B.; Peters, B.; Ottawa, A.; Pivovarova-Ramich, O. Time restricted eating: A dietary strategy to prevent and treat metabolic disturbances. Front. Endocrinol. 2021, 12, 683140. [Google Scholar] [CrossRef] [PubMed]
- Petridi, F.; Geurts, J.M.; Nyakayiru, J.; Schaafsma, A.; Schaafsma, D.; Meex, R.C.; Singh-Povel, C.M. Effects of Early and Late Time-Restricted Feeding on Parameters of Metabolic Health: An Explorative Literature Assessment. Nutrients 2024, 16, 1721. [Google Scholar] [CrossRef]
- Lages, M.; Carmo-Silva, S.; Barros, R.; Guarino, M.P. Effects of Time-Restricted Eating on Body Composition, Biomarkers of Metabolism, Inflammation, Circadian System and Oxidative Stress in Overweight and Obesity: An Exploratory Review. Proc. Nutr. Soc. 2024, 1–31. [Google Scholar] [CrossRef]
- Mazur, J.; Dzielska, A.; Małkowska-Szkutnik, A. Psychosocial determinant of selected eating behaviours in adolescents. Med. Wieku Rozw. 2011, 15, 240–249. [Google Scholar]
- Zahedi, H.; Djalalinia, S.; Sadeghi, O.; Zare Garizi, F.; Asayesh, H.; Payab, M.; Zarei, M.; Qorbani, M. Breakfast consumption and mental health: A systematic review and meta-analysis of observational studies. Nutr. Neurosci. 2022, 25, 1250–1264. [Google Scholar] [CrossRef]
- Blanton, C.A.; Moshfegh, A.J.; Baer, D.J.; Kretsch, M.J. The USDA Automated Multiple-Pass Method accurately estimates group total energy and nutrient intake. J. Nutr. 2006, 136, 2594–2599. [Google Scholar] [CrossRef] [PubMed]
- Moshfegh, A.J.; Rhodes, D.G.; Baer, D.J.; Murayi, T.; Clemens, J.C.; Rumpler, W.V.; Paul, D.R.; Sebastian, R.S.; Kuczynski, K.J.; Ingwersen, L.A.; et al. The US Department of Agriculture Automated Multiple-Pass Method reduces bias in the collection of energy intakes. Am. J. Clin. Nutr. 2008, 88, 324–332. [Google Scholar] [CrossRef] [PubMed]
- Chastin, S.F.M.; De Craemer, M.; De Cocker, K.; Powell, L.; Van Cauwenberg, J.; Dall, P.; Hamer, M.; Stamatakis, E. How does light-intensity physical activity associate with adult cardiometabolic health and mortality? Systematic review with meta-analysis of experimental and observational studies. Br. J. Sports Med. 2019, 53, 370–376. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Overall N = 163,365,719 | Yes N = 71,781,886 | No N = 91,583,833 | p-Value |
---|---|---|---|---|
Age, years | 48 (33, 63) | 47 (33, 61) | 50 (33, 65) | 0.094 |
Sex | <0.001 | |||
Men | 78,633,894 (48%) | 30,458,685 (42%) | 48,175,209 (53%) | |
Women | 84,731,825 (52%) | 41,323,202 (58%) | 43,408,623 (47%) | |
Race/ethnicity | 0.2 | |||
Mexican American | 13,997,151 (8.6%) | 6,954,507 (9.7%) | 7,042,643 (7.7%) | |
Other Hispanic | 11,550,021 (7.1%) | 5,227,646 (7.3%) | 6,322,375 (6.9%) | |
Non-Hispanic White | 103,831,510 (64%) | 44,682,828 (62%) | 59,148,682 (65%) | |
Non-Hispanic Black | 17,274,683 (11%) | 7,154,829 (10.0%) | 10,119,854 (11%) | |
Other race—including multi-racial | 16,712,355 (10%) | 7,762,077 (11%) | 8,950,278 (9.8%) | |
Education | <0.001 | |||
Below high school | 16,118,032 (10%) | 5,059,558 (7.2%) | 11,058,475 (13%) | |
High school | 43,121,968 (27%) | 17,728,701 (25%) | 25,393,267 (29%) | |
Beyond high school | 99,017,676 (63%) | 47,225,856 (67%) | 51,791,820 (59%) | |
Body mass index, kg/m2 | 28 (24, 33) | 31 (27, 35) | 26 (23, 30) | <0.001 |
Body mass index | <0.001 | |||
Underweight/normal | 44,069,948 (28%) | 9,916,797 (14%) | 34,153,151 (39%) | |
Overweight | 53,967,360 (34%) | 24,406,910 (34%) | 29,560,450 (34%) | |
Obesity | 61,075,893 (38%) | 37,130,451 (52%) | 23,945,442 (27%) | |
Working status | 0.012 | |||
Not working | 65,285,256 (41%) | 25,677,404 (37%) | 39,607,852 (44%) | |
Part-time | 26,377,973 (17%) | 11,743,644 (17%) | 14,634,329 (16%) | |
Full-time | 66,894,404 (42%) | 31,697,998 (46%) | 35,196,406 (39%) | |
Income level | <0.001 | |||
Low | 18,675,282 (13%) | 6,436,910 (10%) | 12,238,372 (15%) | |
Middle | 66,737,035 (46%) | 26,884,782 (42%) | 39,852,253 (48%) | |
High | 61,060,391 (42%) | 30,780,549 (48%) | 30,279,842 (37%) | |
Partner | 0.003 | |||
Married/partner | 99,896,139 (63%) | 47,069,118 (67%) | 52,827,021 (60%) | |
Single | 58,394,728 (37%) | 22,966,382 (33%) | 35,428,346 (40%) | |
Smoking status | <0.001 | |||
Current smoking | 33,468,344 (22%) | 9,761,175 (14%) | 23,707,169 (28%) | |
Non-smoking | 120,716,609 (78%) | 58,373,600 (86%) | 62,343,009 (72%) | |
Alcohol use | 0.069 | |||
Heavy | 58,113,097 (43%) | 27,998,913 (47%) | 30,114,184 (41%) | |
Moderate | 62,943,076 (47%) | 27,207,829 (45%) | 35,735,247 (48%) | |
No | 12,753,376 (9.5%) | 4,901,736 (8.2%) | 7,851,641 (11%) | |
Physical activity, >150 min/wk | 105,528,092 (65%) | 48,411,171 (67%) | 57,116,921 (62%) | 0.003 |
Sedentary time, min/day | 300 (180, 480) | 360 (240, 480) | 300 (180, 480) | <0.001 |
Characteristic | Yes N = 71,781,886 | No N = 91,583,833 | p-Value |
---|---|---|---|
Hours between Waketime and First Eating 1 | 1.64 (1.51) | 1.71 (1.56) | 0.3 |
Hours between Last Eating and Bedtime 1 | 2.85 (2.00) | 2.84 (1.99) | >0.9 |
Hours between Awake Midpoint and 50% Caloric Point 1 | 0.48 (2.62) | 0.54 (2.69) | 0.6 |
Eating Window, h 1 | 11.96 (2.27) | 11.91 (2.27) | 0.6 |
Number of Eating Episodes 1 | 5.38 (1.71) | 5.24 (1.58) | 0.13 |
Number of Main Meal Episodes 1 | 2.55 (0.77) | 2.53 (0.77) | 0.7 |
Frequency of Snack 1 | 3.05 (1.69) | 2.92 (1.58) | 0.12 |
Frequency of Nighttime Snack 2 | 0.50 (0.00, 1.00) | 0.50 (0.00, 1.00) | 0.5 |
% of Total Kcal <2 h of Waketime 2 | 8 (0, 19) | 7 (0, 20) | 0.7 |
% of Total Kcal >2 h of Waketime and Waking Midpoint 2 | 38 (26, 49) | 38 (26, 49) | 0.7 |
% of Total Kcal Waking Midpoint to >2 h of Bedtime 2 | 46 (35, 58) | 46 (34, 58) | 0.8 |
% of Total Kcal <2 h of Bedtime 2 | 0 (0, 9) | 0 (0, 12) | 0.031 |
Having Breakfast 3 | 59,919,069 (83%) | 77,601,179 (85%) | 0.4 |
Having Lunch 3 | 58,691,905 (82%) | 73,223,050 (80%) | 0.3 |
Having Dinner 3 | 56,010,160 (78%) | 68,993,057 (75%) | 0.2 |
Having Snack 3 | 69,865,821 (97%) | 89,156,217 (97%) | >0.9 |
Total Kcal 1 | 1966 (779) | 2066 (834) | 0.011 |
Health Eating Index 1 | 52 (12) | 50 (13) | <0.001 |
Characteristic | Typical Eating N = 39,331,668 | Early Eating N = 6,037,501 | Later Eating N = 4,852,869 | Extended Eating Window N = 19,561,923 |
---|---|---|---|---|
Hours between Waketime and First Eating | 1.57 (0.99) | 1.67 (1.28) | 5.52 (1.85) | 0.81 (0.62) |
Hours between Last Eating and Bedtime | 2.91 (1.16) | 7.17 (2.30) | 3.17 (1.96) | 1.24 (0.69) |
Hours between Awake Midpoint and 50% Caloric Point | 0.20 (2.55) | −1.06 (2.49) | 2.04 (2.57) | 1.18 (2.39) |
Eating Window | 11.78 (1.05) | 9.50 (2.48) | 7.97 (3.03) | 14.16 (1.05) |
Characteristic | Weight Loss N = 2,374,492 1 | Weight Maintenance N = 45,903,898 1 | Weight Gain N = 20,104,228 1 | p-Value |
---|---|---|---|---|
Hours between Waketime and First Eating 1 | 1.62 (1.50) | 1.57 (1.48) | 1.78 (1.49) | 0.024 |
Hours between Last Eating and Bedtime 1 | 2.92 (1.35) | 2.83 (2.04) | 2.79 (1.91) | 0.5 |
Hours between Awake Midpoint and 50% Caloric Point 1 | 0.28 (2.67) | 0.60 (2.51) | 0.34 (2.77) | 0.7 |
Eating Window, h 1 | 11.68 (1.98) | 12.09 (2.27) | 11.86 (2.22) | 0.2 |
Number of Eating Episodes 1 | 5.43 (1.66) | 5.50 (1.77) | 5.20 (1.52) | 0.008 |
Number of Main Meal Episodes 1 | 2.46 (0.77) | 2.55 (0.79) | 2.55 (0.71) | 0.8 |
Frequency of Snack 1 | 3.12 (1.53) | 3.16 (1.73) | 2.88 (1.58) | 0.10 |
Frequency of Nighttime Snack 2 | 0.50 (0.00, 1.00) | 0.50 (0.00, 1.00) | 0.50 (0.00, 1.00) | 0.6 |
% of Total Kcal <2 h of Waketime 2 | 11 (0, 19) | 8 (0, 18) | 7 (0, 19) | 0.5 |
% of Total Kcal >2 h of Waketime and Waking Midpoint 2 | 30 (13, 48) | 37 (26, 48) | 39 (29, 51) | 0.2 |
% of Total Kcal Waking Midpoint to >2 h of Bedtime 2 | 52 (43, 68) | 47 (35, 58) | 43 (34, 55) | <0.001 |
% of Total Kcal <2 h of Bedtime 2 | 0 (0, 6) | 0 (0, 10) | 0 (0, 10) | >0.9 |
Having Breakfast 3 | 1,940,134 (82%) | 39,289,111 (86%) | 16,088,521 (80%) | 0.069 |
Having Lunch 3 | 1,884,341 (79%) | 37,932,845 (83%) | 16,436,620 (82%) | 0.8 |
Having Dinner 3 | 1,894,735 (80%) | 34,859,309 (76%) | 16,546,231 (82%) | 0.055 |
Having Snack 3 | 2,374,492 (100%) | 44,740,605 (97%) | 19,651,224 (98%) | 0.5 |
Total Kcal 1 | 1974 (782) | 1994 (771) | 1903 (762) | 0.2 |
Health Eating Index 1 | 54 (12) | 53 (12) | 50 (12) | 0.014 |
Chrononutrition Profile 3 | 0.068 | |||
Early Eating | 227,854 (9.6%) | 3,655,293 (8.0%) | 2,022,425 (10%) | |
Extended Eating Window | 285,684 (12%) | 14,250,093 (31%) | 4,861,106 (24%) | |
Later Eating | 188,937 (8.0%) | 2,952,477 (6.4%) | 1,581,425 (7.9%) | |
Typical Eating | 1,672,016 (70%) | 25,046,035 (55%) | 11,639,272 (58%) |
Characteristic | Underweight/Normal N = 9,511,853 | Overweight N = 23,768,388 | Obesity N = 36,175,991 | p-Value |
---|---|---|---|---|
Hours between Waketime and First Eating 1 | 1.29 (1.31) | 1.53 (1.31) | 1.80 (1.64) | <0.001 |
Hours between Last Eating and Bedtime 1 | 2.75 (1.65) | 2.69 (1.89) | 2.94 (2.13) | 0.2 |
Hours between Awake Midpoint and 50% Caloric Point 1 | 0.31 (2.36) | 0.51 (2.61) | 0.53 (2.67) | 0.3 |
Eating Window, h 1 | 12.22 (2.02) | 12.25 (2.02) | 11.77 (2.43) | 0.020 |
Number of Eating Episodes 1 | 5.97 (1.88) | 5.55 (1.55) | 5.16 (1.73) | <0.001 |
Number of Main Meal Episodes 1 | 2.80 (0.66) | 2.64 (0.75) | 2.41 (0.77) | <0.001 |
Frequency of Snack 1 | 3.29 (1.69) | 3.19 (1.66) | 2.95 (1.72) | 0.036 |
Frequency of Nighttime Snack 2 | 0.50 (0.00, 1.00) | 0.50 (0.00, 1.00) | 0.50 (0.00, 1.00) | 0.3 |
% of Total Kcal <2 h of Waketime 2 | 9 (0, 20) | 8 (0, 18) | 7 (0, 19) | 0.3 |
% of Total Kcal >2 h of Waketime and Waking Midpoint 2 | 39 (24, 48) | 37 (27, 48) | 38 (26, 50) | >0.9 |
% of Total Kcal Waking Midpoint to >2 h of Bedtime 2 | 45 (36, 57) | 47 (36, 57) | 46 (34, 58) | 0.5 |
% of Total Kcal <2 h of Bedtime 2 | 0 (0, 12) | 0 (0, 10) | 0 (0, 9) | 0.8 |
Having Breakfast 3 | 8,672,109 (91%) | 20,387,578 (86%) | 28,951,429 (80%) | <0.001 |
Having Lunch 3 | 8,560,195 (90%) | 19,998,057 (84%) | 28,321,735 (78%) | 0.005 |
Having Dinner 3 | 8,436,761 (89%) | 18,420,479 (77%) | 27,150,005 (75%) | 0.001 |
Having Snack 3 | 9,352,806 (98%) | 23,574,755 (99%) | 34,738,703 (96%) | 0.002 |
Total Kcal 1 | 1856 (671) | 2004 (734) | 1961 (809) | 0.3 |
Health Eating Index 1 | 56 (12) | 54 (12) | 50 (12) | <0.001 |
Chrononutrition Profile 3 | 0.063 | |||
Early Eating | 883,820 (9.3%) | 1,799,088 (7.6%) | 3,328,882 (9.2%) | |
Extended Eating Window | 3,116,765 (33%) | 7,725,655 (33%) | 8,674,361 (24%) | |
Later Eating | 528,284 (5.6%) | 1,215,364 (5.1%) | 2,993,385 (8.3%) | |
Typical Eating | 4,982,984 (52%) | 13,028,282 (55%) | 21,179,363 (59%) |
Characteristic | Non-Obesity N = 20,964,970 | Obesity N = 48,818,991 | p-Value |
---|---|---|---|
Hours between Waketime and First Eating 1 | 1.52 (1.49) | 1.69 (1.52) | 0.10 |
Hours between Last Eating and Bedtime 1 | 2.81 (1.93) | 2.83 (2.01) | >0.9 |
Hours between Awake Midpoint and 50% Caloric Point 1 | 0.44 (2.54) | 0.52 (2.63) | 0.7 |
Eating Window, h 1 | 12.09 (2.25) | 11.94 (2.26) | 0.3 |
Number of Eating Episodes 1 | 5.56 (1.70) | 5.33 (1.72) | 0.2 |
Number of Main Meal Episodes 1 | 2.73 (0.72) | 2.46 (0.77) | <0.001 |
Frequency of Snack 1 | 3.03 (1.58) | 3.09 (1.75) | 0.6 |
Frequency of Nighttime Snack 2 | 0.50 (0.00, 1.00) | 0.50 (0.00, 1.00) | 0.3 |
% of Total Kcal <2 h of Waketime 2 | 8 (0, 19) | 7 (0, 18) | 0.14 |
% of Total Kcal >2 h of Waketime and Waking Midpoint 2 | 38 (27, 48) | 37 (26, 50) | >0.9 |
% of Total Kcal Waking Midpoint to >2 h of Bedtime 2 | 45 (33, 54) | 47 (35, 59) | 0.012 |
% of Total Kcal <2 h of Bedtime 2 | 0 (0, 12) | 0 (0, 9) | 0.2 |
Having Breakfast 3 | 18,273,959 (87%) | 39,959,542 (82%) | 0.010 |
Having Lunch 3 | 18,554,603 (89%) | 38,618,732 (79%) | 0.003 |
Having Dinner 3 | 17,844,507 (85%) | 36,417,642 (75%) | 0.006 |
Having Snack 3 | 20,530,340 (98%) | 47,463,652 (97%) | 0.5 |
Total Kcal 1 | 2043 (776) | 1927 (763) | 0.051 |
Health Eating Index 1 | 55 (13) | 51 (12) | 0.002 |
Chrononutrition Profile 3 | 0.024 | ||
Early Eating | 2,173,719 (10%) | 3,863,782 (7.9%) | |
Extended Eating Window | 7,041,269 (34%) | 12,520,655 (26%) | |
Later Eating | 1,496,916 (7.1%) | 3,355,953 (6.9%) | |
Typical Eating | 10,253,067 (49%) | 29,078,602 (60%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, N.; Jang, H.; Hawkins, M. Chrononutrition Patterns in People Who Attempted Weight Loss in the Past Year: A Descriptive Analysis of the National Health and Nutrition Examination Survey (NHANES) 2017–2020 Pre-Pandemic. Dietetics 2025, 4, 24. https://doi.org/10.3390/dietetics4020024
Kim N, Jang H, Hawkins M. Chrononutrition Patterns in People Who Attempted Weight Loss in the Past Year: A Descriptive Analysis of the National Health and Nutrition Examination Survey (NHANES) 2017–2020 Pre-Pandemic. Dietetics. 2025; 4(2):24. https://doi.org/10.3390/dietetics4020024
Chicago/Turabian StyleKim, Namhyun, Hajin Jang, and Marquis Hawkins. 2025. "Chrononutrition Patterns in People Who Attempted Weight Loss in the Past Year: A Descriptive Analysis of the National Health and Nutrition Examination Survey (NHANES) 2017–2020 Pre-Pandemic" Dietetics 4, no. 2: 24. https://doi.org/10.3390/dietetics4020024
APA StyleKim, N., Jang, H., & Hawkins, M. (2025). Chrononutrition Patterns in People Who Attempted Weight Loss in the Past Year: A Descriptive Analysis of the National Health and Nutrition Examination Survey (NHANES) 2017–2020 Pre-Pandemic. Dietetics, 4(2), 24. https://doi.org/10.3390/dietetics4020024