Effect of a Two-Week Diet without Meat and Poultry on Serum Coenzyme Q10 Levels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Ethics Approval
2.3. Blood Collection and Biochemical Analysis Measurements of CoQ10
2.4. Measurements of CoQ10
2.5. Data Analyses
3. Results
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guerra, R.M.; Pagliarini, D.J. Coenzyme Q biochemistry and biosynthesis. Trends Biochem. Sci. 2023, 48, 463–476. [Google Scholar] [CrossRef] [PubMed]
- Stefely, J.A.; Pagliarini, D.J. Biochemistry of Mitochondrial Coenzyme Q Biosynthesis. Trends Biochem. Sci. 2017, 42, 824–843. [Google Scholar] [CrossRef] [PubMed]
- Aaseth, J.; Alexander, J.; Alehagen, U. Coenzyme Q10 supplementation—In ageing and disease. Mech. Ageing Dev. 2021, 197, 111521. [Google Scholar] [CrossRef] [PubMed]
- Kalen, A.; Appelkvist, E.L.; Dallner, G. Age-related changes in the lipid compositions of rat and human tissues. Lipids 1989, 24, 579–584. [Google Scholar] [CrossRef]
- Hernandez-Camacho, J.D.; Bernier, M.; Lopez-Lluch, G.; Navas, P. Coenzyme Q10 Supplementation in Aging and Disease. Front. Physiol. 2018, 9, 44. [Google Scholar] [CrossRef] [PubMed]
- Cupp, M.J.; Tracy, T.S. (Eds.) Coenzyme Q10 (Ubiquinone, Ubidecarenone). In Dietary Supplements: Toxicology and Clinical Pharmacology; Humana Press: Totowa, NJ, USA, 2003; pp. 53–85. [Google Scholar]
- Okamoto, T.; Fukui, K.; Nakamoto, M.; Kishi, T.; Kanamori, N.; Kataoka, K.; Nishii, S.; Kishi, H.; Hiraoka, E.; Okada, A. Serum Levels of Coenzyme Q10 and Lipids in Patients during Total Parenteral Nutrition. J. Nutr. Sci. Vitaminol. 1986, 32, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Pravst, I.; Zmitek, K.; Zmitek, J. Coenzyme Q10 contents in foods and fortification strategies. Crit. Rev. Food Sci. Nutr. 2010, 50, 269–280. [Google Scholar] [CrossRef] [PubMed]
- Weber, C.; Bysted, A.; Hllmer, G. The coenzyme Q10 content of the average Danish diet. Int. J. Vitam. Nutr. Res. 1997, 67, 123–129. [Google Scholar] [PubMed]
- Kawai, K.; Otani, M.; Udagawa, K.; Takahashi, M.; Suzuki, T. Study of nutritional guidance methods concerning coenzyme Q10 intake. New Diet Ther. 2016, 32, 3–13. [Google Scholar]
- Singh, R.B.; Niaz, M.A.; Kumar, A.; Sindberg, C.D.; Moesgaard, S.; Littarru, G.P. Effect on absorption and oxidative stress of different oral Coenzyme Q10 dosages and intake strategy in healthy men. Biofactors 2005, 25, 219–224. [Google Scholar] [CrossRef]
- Iwasaki, M.; Franke, A.A.; Hamada, G.S.; Miyajima, N.T.; Sharma, S.; Ishihara, J.; Takachi, R.; Tsugane, S.; Le Marchand, L. Comparison of plasma levels of nutrient-related biomarkers among Japanese populations in Tokyo, Japan, Sao Paulo, Brazil, and Hawaii, USA. Eur. J. Cancer Prev. 2015, 24, 155–161. [Google Scholar] [CrossRef] [PubMed]
- OECD Meat Consumption. Available online: https://data.oecd.org/agroutput/meat-consumption.htm (accessed on 18 January 2024).
- Yamaguchi, T.; Hosoe, K.; Funahashi, I. Lower plasma coenzyme Q10 concentrations in healthy vegetarians and vegans compared with omnivores. Nutrafoods 2022, 1, 379–386. [Google Scholar] [CrossRef]
- Kobayashi, S.; Honda, S.; Murakami, K.; Sasaki, S.; Okubo, H.; Hirota, N.; Notsu, A.; Fukui, M.; Date, C. Both Comprehensive and Brief Self-Administered Diet History Questionnaires Satisfactorily Rank Nutrient Intakes in Japanese Adults. J. Epidemiol. 2012, 22, 151–159. [Google Scholar] [CrossRef]
- Takahashi, M.; Nagata, M.; Kaneko, T.; Suzuki, T. Miso Soup Consumption Enhances the Bioavailability of the Reduced Form of Supplemental Coenzyme Q10. J. Nutr. Metab. 2020, 2020, 5349086. [Google Scholar] [CrossRef]
- Hirai, A. An epidemiological study on the dietary ingestion of eicosapentaenoic acid (EPA) and platelet function in Japanese. J. Jpn. Soc. Intern. Med. 1985, 74, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, T.; Kimoto, S.; Hozumi, R. Effects of fish intake frequency on plasma laboratory test. Bull. Minamikyushu Univ. 2018, 48A, 1–8. [Google Scholar]
- Kubo, H.; Fujii, K.; Kawabe, T.; Matsumoto, S.; Kishida, H.; Hosoe, K. Food content of ubiquinol-10 and ubiquinone-10 in the Japanese diet. J. Food Compos. Anal. 2008, 21, 199–210. [Google Scholar] [CrossRef]
- Mattila, P.; Kumpulainen, J. Coenzymes Q9and Q10: Contents in Foods and Dietary Intake. J. Food Composit. Anal. 2001, 14, 409–417. [Google Scholar] [CrossRef]
- Bhagavan, H.N.; Chopra, R.K.; Craft, N.E.; Chitchumroonchokchai, C.; Failla, M.L. Assessment of coenzyme Q10 absorption using an in vitro digestion-Caco-2 cell model. Int. J. Pharm. 2007, 333, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Mohr, D.; Bowry, V.W.; Stocker, R. Dietary supplementation with coenzyme Q10 results in increased levels of ubiquinol-10 within circulating lipoproteins and increased resistance of human low-density lipoprotein to the initiation of lipid peroxidation. Biochim. Biophys. Acta 1992, 1126, 247–254. [Google Scholar] [CrossRef]
- Macho-Gonzalez, A.; Garcimartin, A.; Lopez-Oliva, M.E.; Bastida, S.; Benedi, J.; Ros, G.; Nieto, G.; Sanchez-Muniz, F.J. Can Meat and Meat-Products Induce Oxidative Stress? Antioxidants 2020, 9, 638. [Google Scholar] [CrossRef] [PubMed]
- Rowicka, G.; Klemarczyk, W.; Ambroszkiewicz, J.; Strucinska, M.; Kawiak-Jawor, E.; Weker, H.; Chelchowska, M. Assessment of Oxidant and Antioxidant Status in Prepubertal Children following Vegetarian and Omnivorous Diets. Antioxidants 2023, 12, 682. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, F. International research trends that focus on sustainable diet beyond healthy diet. J. Food Syst. Res. 2020, 27, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Willett, W.; Rockstrom, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef] [PubMed]
- Niklowitz, P.; Onur, S.; Fischer, A.; Laudes, M.; Palussen, M.; Menke, T.; Doring, F. Coenzyme Q10 serum concentration and redox status in European adults: Influence of age, sex, and lipoprotein concentration. J. Clin. Biochem. Nutr. 2016, 58, 240–245. [Google Scholar] [CrossRef]
- Siebrecht, S.; Chan, D.Y.L.; Rosenfeldt, F.; Lin, K.W. Coenzyme Q10 and ubiquinol for physical performance. In Coenzyme Q10: From Fact to Fiction; Hargreaves, I.P., Ed.; Nova Science Pub Inc.: London, UK, 2015; pp. 293–321. [Google Scholar]
Parameter | Participants |
---|---|
Age (years) | 20.7 ± 0.4 |
Women/men (n/n) | 22/0 |
Height (m) | 1.58 ± 0.07 |
Weight (kg) | 52.0 ± 7.4 |
BMI (kg/m2) | 20.7 ± 2.4 |
BL | MR | p-Value | ||
---|---|---|---|---|
Energy (kJ) | 6831 ± 1942 | 6366 ± 1501 | 0.104 | |
Carbohydrate (g) | 228 ± 65 | 212 ± 55 | 0.223 | |
Protein (g) | 64.5 ± 23.0 | 53.4 ± 13.1 | 0.0040 | |
Animal protein (g) | 37.7 ± 17.3 | 29.6 ± 10.7 | 0.0076 | |
Vegetable protein (g) | 26.8 ± 7.7 | 23.8 ± 5.8 | 0.054 | |
Fat (g) | 47.3 ± 17.9 | 45.4 ± 13.7 | 0.441 | |
Animal fat (g) | 22.7 ± 9.5 | 20.3 ± 6.8 | 0.095 | |
Vegetable fat (g) | 24.6 ± 9.9 | 25.1 ± 9.0 | 0.722 | |
Meat (g) | 39.9 ± 25.9 | 16.4 ± 18.1 | 2.0 × 10−4 | |
Poultry (g) | 35.1 ± 31.1 | 8.2 ± 7.3 | 7.9 × 10−4 | |
Fish (g) | 51.2 ± 30.2 | 117.6 ± 73.2 | 5.4 × 10−4 | |
CoQ10 (mg) | 2.1 ± 0.6 | 1.1 ± 0.5 | 8.7 × 10−9 |
BL | MR | p-Value | |
---|---|---|---|
Glc (mmol/L) | 4.82 ± 0.28 | 4.94 ± 0.31 | 0.061 |
TG (mmol/L) | 0.58 ± 0.16 | 0.63 ± 0.26 | 0.161 |
TC (mmol/L) | 4.84 ± 0.70 | 4.74 ± 0.63 | 0.269 |
HDL-C (mmol/L) | 1.75 ± 0.33 | 1.72 ± 0.35 | 0.193 |
LDL-C (mmol/L) | 2.86 ± 0.80 | 2.71 ± 0.77 | 0.076 |
DHLA (mg/L) | 26.3 ± 6.6 | 22.9 ± 5.5 | 0.0083 |
AA (mg/L) | 167.8 ± 31.4 | 149.2 ± 27.5 | 0.000017 |
EPA (mg/L) | 36.0 ± 21.5 | 59.8 ± 32.3 | 0.0025 |
DHA (mg/L) | 93.7 ± 25.8 | 109.4 ± 31.6 | 0.0071 |
EPA/ALA | 0.22 ± 0.13 | 0.41 ± 0.22 | 0.00035 |
Iron (Fe) (µmol/L) | 18.9 ± 7.1 | 16.3 ± 5.4 | 0.189 |
ALT (U/L) | 14.3 ± 3.6 | 11.5 ± 3.7 | 0.0029 |
AST (U/L) | 13.6 ± 3.7 | 16.0 ± 3.0 | 0.0023 |
γ-GTP (U/L) | 13.7 ± 4.8 | 13.3 ± 4.2 | 0.268 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suzuki, T. Effect of a Two-Week Diet without Meat and Poultry on Serum Coenzyme Q10 Levels. Dietetics 2024, 3, 227-234. https://doi.org/10.3390/dietetics3030018
Suzuki T. Effect of a Two-Week Diet without Meat and Poultry on Serum Coenzyme Q10 Levels. Dietetics. 2024; 3(3):227-234. https://doi.org/10.3390/dietetics3030018
Chicago/Turabian StyleSuzuki, Toshikazu. 2024. "Effect of a Two-Week Diet without Meat and Poultry on Serum Coenzyme Q10 Levels" Dietetics 3, no. 3: 227-234. https://doi.org/10.3390/dietetics3030018
APA StyleSuzuki, T. (2024). Effect of a Two-Week Diet without Meat and Poultry on Serum Coenzyme Q10 Levels. Dietetics, 3(3), 227-234. https://doi.org/10.3390/dietetics3030018