Major Mergers as Possible Drivers of the Galaxy Mass Assembly in the Early Universe: New Insights from ALMA Observations †
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
3.1. Major Merger Fraction
3.2. The Contribution of Major Mergers to the Galaxy Mass Assembly
4. Conclusions
- We identified 23 mergers out of 75 [CII]-detected galaxies, corresponding to ∼31% of the sample. By using Equation (1), we put the first constraint from the [CII] observations on the fraction of major mergers shortly after the end of the Reionization epoch, which amounted to and at and , respectively. By combining these measurements with previous works at lower redshifts, we obtained the cosmic evolution of the merger fraction, which highlighted a larger presence of interacting galaxies at early times than in the local Universe, as also predicted by simulations (see Figure 1).
- We estimated the stellar mass accretion rate density () due to major mergers, comparing it with the SFRD cosmic evolution (see Figure 2). Depending on the choice of the merger timescale, we found that the contribution of major mergers to the global star-formation rate ranged between 5% to 30% at .
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bouché, N.; Dekel, A.; Genzel, R.; Genel, S.; Cresci, G.; Förster Schreiber, N.M.; Shapiro, K.L.; Davies, R.I.; Tacconi, L. The Impact of Cold Gas Accretion Above a Mass Floor on Galaxy Scaling Relations. Astrophys. J. 2010, 718, 1001–1018. [Google Scholar] [CrossRef]
- Duncan, K.; Conselice, C.J.; Mundy, C.; Bell, E.; Donley, J.; Galametz, A.; Guo, Y.; Grogin, N.A.; Hathi, N.; Kartaltepe, J.; et al. Observational Constraints on the Merger History of Galaxies since z ≈ 6: Probabilistic Galaxy Pair Counts in the CANDELS Fields. Astrophys. J. 2019, 876, 110. [Google Scholar] [CrossRef]
- Romano, M.; Cassata, P.; Morselli, L.; Jones, G.C.; Ginolfi, M.; Zanella, A.; Béthermin, M.; Capak, P.; Faisst, A.; Le Fèvre, O.; et al. The ALPINE-ALMA [CII] survey. The contribution of major mergers to the galaxy mass assembly at z ∼ 5. Astron. Astrophys. 2021, 653, A111. [Google Scholar] [CrossRef]
- Jones, G.C.; Béthermin, M.; Fudamoto, Y.; Ginolfi, M.; Capak, P.; Cassata, P.; Faisst, A.; Le Fèvre, O.; Schaerer, D.; Silverman, J.D.; et al. The ALPINE-ALMA [C II] survey: A triple merger at z ∼ 4.56. Mon. Not. R. Astron. Soc. 2020, 491, L18–L23. [Google Scholar] [CrossRef]
- Béthermin, M.; Fudamoto, Y.; Ginolfi, M.; Loiacono, F.; Khusanova, Y.; Capak, P.L.; Cassata, P.; Faisst, A.; Le Fèvre, O.; Schaerer, D.; et al. The ALPINE-ALMA [CII] survey: Data processing, catalogs, and statistical source properties. Astron. Astrophys. 2020, 643, A2. [Google Scholar] [CrossRef]
- Faisst, A.L.; Schaerer, D.; Lemaux, B.C.; Oesch, P.A.; Fudamoto, Y.; Cassata, P.; Béthermin, M.; Capak, P.L.; Le Fèvre, O.; Silverman, J.D.; et al. The ALPINE-ALMA [C II] Survey: Multiwavelength Ancillary Data and Basic Physical Measurements. Astrophys. J. Suppl. Ser. 2020, 247, 61. [Google Scholar] [CrossRef]
- Le Fèvre, O.; Béthermin, M.; Faisst, A.; Jones, G.C.; Capak, P.; Cassata, P.; Silverman, J.D.; Schaerer, D.; Yan, L.; Amorin, R.; et al. The ALPINE-ALMA [CII] survey. Survey strategy, observations, and sample properties of 118 star-forming galaxies at 4 < z < 6. Astron. Astrophys. 2020, 643, A1. [Google Scholar] [CrossRef]
- Noeske, K.G.; Weiner, B.J.; Faber, S.M.; Papovich, C.; Koo, D.C.; Somerville, R.S.; Bundy, K.; Conselice, C.J.; Newman, J.A.; Schiminovich, D.; et al. Star Formation in AEGIS Field Galaxies since z=1.1: The Dominance of Gradually Declining Star Formation, and the Main Sequence of Star-forming Galaxies. Astrophys. J. 2007, 660, L43–L46. [Google Scholar] [CrossRef]
- Rodighiero, G.; Daddi, E.; Baronchelli, I.; Cimatti, A.; Renzini, A.; Aussel, H.; Popesso, P.; Lutz, D.; Andreani, P.; Berta, S.; et al. The Lesser Role of Starbursts in Star Formation at z = 2. Astrophys. J. 2011, 739, L40. [Google Scholar] [CrossRef]
- Speagle, J.S.; Steinhardt, C.L.; Capak, P.L.; Silverman, J.D. A Highly Consistent Framework for the Evolution of the Star-Forming “Main Sequence” from z ~ 0–6. Astrophys. J. Suppl. Ser. 2014, 214, 15. [Google Scholar] [CrossRef]
- McMullin, J.P.; Waters, B.; Schiebel, D.; Young, W.; Golap, K. CASA Architecture and Applications. In Proceedings of the Astronomical Data Analysis Software and Systems XVI, Tucson, Arizona, USA, 15–18 October 2006; Shaw, R.A., Hill, F., Bell, D.J., Eds.; Astronomical Society of the Pacific: San Francisco, USA, 2007; Volume 376, p. 127. [Google Scholar]
- Yan, L.; Sajina, A.; Loiacono, F.; Lagache, G.; Béthermin, M.; Faisst, A.; Ginolfi, M.; Fèvre, O.L.; Gruppioni, C.; Capak, P.L.; et al. The ALPINE-ALMA [C II] Survey: [C II] 158 μm Emission Line Luminosity Functions at z ∼ 4–6. Astrophys. J. 2020, 905, 147. [Google Scholar] [CrossRef]
- Conselice, C.J.; Arnold, J. The structures of distant galaxies-II. Diverse galaxy structures and local environments at z = 4–6 implications for early galaxy assembly. Mon. Not. R. Astron. Soc. 2009, 397, 208–231. [Google Scholar] [CrossRef]
- Qu, Y.; Helly, J.C.; Bower, R.G.; Theuns, T.; Crain, R.A.; Frenk, C.S.; Furlong, M.; McAlpine, S.; Schaller, M.; Schaye, J.; et al. A chronicle of galaxy mass assembly in the EAGLE simulation. Mon. Not. R. Astron. Soc. 2017, 464, 1659–1675. [Google Scholar] [CrossRef]
- Schaye, J.; Crain, R.A.; Bower, R.G.; Furlong, M.; Schaller, M.; Theuns, T.; Dalla Vecchia, C.; Frenk, C.S.; McCarthy, I.G.; Helly, J.C.; et al. The EAGLE project: Simulating the evolution and assembly of galaxies and their environments. Mon. Not. R. Astron. Soc. 2015, 446, 521–554. [Google Scholar] [CrossRef]
- Kitzbichler, M.G.; White, S.D.M. A calibration of the relation between the abundance of close galaxy pairs and the rate of galaxy mergers. Mon. Not. R. Astron. Soc. 2008, 391, 1489–1498. [Google Scholar] [CrossRef]
- Jiang, C.Y.; Jing, Y.P.; Han, J. A Scaling Relation between Merger Rate of Galaxies and Their Close Pair Count. Astrophys. J. 2014, 790, 7. [Google Scholar] [CrossRef]
- Snyder, G.F.; Lotz, J.M.; Rodriguez-Gomez, V.; Guimarães, R.d.S.; Torrey, P.; Hernquist, L. Massive close pairs measure rapid galaxy assembly in mergers at high redshift. Mon. Not. R. Astron. Soc. 2017, 468, 207–216. [Google Scholar] [CrossRef]
- Madau, P.; Dickinson, M. Cosmic Star-Formation History. Annu. Rev. Astron. Astrophys. 2014, 52, 415–486. [Google Scholar] [CrossRef]
- Khusanova, Y.; Bethermin, M.; Le Fèvre, O.; Capak, P.; Faisst, A.L.; Schaerer, D.; Silverman, J.D.; Cassata, P.; Yan, L.; Ginolfi, M.; et al. The ALPINE-ALMA [CII] survey. Obscured star formation rate density and main sequence of star-forming galaxies at z > 4. Astron. Astrophys. 2021, 649, A152. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romano, M. Major Mergers as Possible Drivers of the Galaxy Mass Assembly in the Early Universe: New Insights from ALMA Observations. Phys. Sci. Forum 2023, 7, 30. https://doi.org/10.3390/ECU2023-14067
Romano M. Major Mergers as Possible Drivers of the Galaxy Mass Assembly in the Early Universe: New Insights from ALMA Observations. Physical Sciences Forum. 2023; 7(1):30. https://doi.org/10.3390/ECU2023-14067
Chicago/Turabian StyleRomano, Michael. 2023. "Major Mergers as Possible Drivers of the Galaxy Mass Assembly in the Early Universe: New Insights from ALMA Observations" Physical Sciences Forum 7, no. 1: 30. https://doi.org/10.3390/ECU2023-14067