Forecasts for ΛCDM and Dark Energy Models through Einstein Telescope Standard Sirens †
Abstract
:1. Introduction
- Non-flat CDM, with the E(z) function defined by [6]
- Non-flat CDM, with the E(z) function defined by [20]
- Time-Varying Gravitational Constant, [26]
2. Mock Data Generation
3. Analysis and Results
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. GW150914: The Advanced LIGO Detectors in the Era of First Discoveries. Phys. Rev. Lett. 2016, 116, 131103. [Google Scholar] [CrossRef] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. Astrophys. J. Lett. 2017, 848, L13. [Google Scholar] [CrossRef] [Green Version]
- Schutz, B.F. Determining the Hubble Constant from Gravitational Wave Observations. Nature 1986, 323, 310–311. [Google Scholar] [CrossRef] [Green Version]
- Holz, D.; Hughes, S.A. Using Gravitational-Wave Standard Sirens. Astrophys. J. 2005, 629, 15–22. [Google Scholar] [CrossRef]
- Weinberg, S. Cosmology; Oxford University Press: Oxford, UK, 2008. [Google Scholar]
- Abbott, R.; Abe, H.; Acernese, F.; Ackley, K.; Adhikari, N.; Adhikari, R.X.; Adkins, V.K.; Adya, V.B.; Affeldt, C.; Agarwal, D.; et al. Constraints on the Cosmic Expansion History from GWTC-3. arXiv 2021, arXiv:2111.03604. [Google Scholar]
- Ding, X.; Biesiada, M.; Zheng, X.; Liao, K.; Li, Z.; Zhu, Z.-H. Cosmological Inference from Standard Sirens without Redshift Measurements. J. Cosmol. Astropart. Phys. 2019, 2019, 033. [Google Scholar] [CrossRef] [Green Version]
- Ye, C.; Fishbach, M. Cosmology with Standard Sirens at Cosmic Noon. Phys. Rev. D 2021, 104, 043507. [Google Scholar] [CrossRef]
- Verde, L.; Treu, T.; Riess, A.G. Tensions between the Early and Late Universe. Nat. Astron. 2019, 3, 891–895. [Google Scholar] [CrossRef] [Green Version]
- Riess, A.G.; Casertano, S.; Yuan, W.; Bowers, J.B.; Macri, L.; Zinn, J.C.; Scolnic, D. Cosmic Distances Calibrated to 1% Precision with Gaia EDR3 Parallaxes and Hubble Space Telescope Photometry of 75 Milky Way Cepheids Confirm Tension with ΛCDM. Astrophys. J. 2021, 908, L6. [Google Scholar] [CrossRef]
- Di Valentino, E.; Mena, O.; Pan, S.; Visinelli, L.; Yang, W.; Melchiorri, A.; Mota, D.F.; Riess, A.G.; Silk, J. In the Realm of the Hubble Tension-a Review of Solutions. Class Quantum Gravity 2021, 38, 153001. [Google Scholar] [CrossRef]
- Planck Collaboration; Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; et al. Planck 2018 Results. VI. Cosmological Parameters. Astron. Astrophys. 2020, 641, A6. [Google Scholar] [CrossRef] [Green Version]
- Maggiore, M.; Broeck, C.V.D.; Bartolo, N.; Belgacem, E.; Bertacca, D.; Bizouard, M.A.; Branchesi, M.; Clesse, S.; Foffa, S.; García-Bellido, J.; et al. Science Case for the Einstein Telescope. J. Cosmol. Astropart. Phys. 2020, 2020, 050. [Google Scholar] [CrossRef] [Green Version]
- Stratta, G.; Ciolfi, R.; Amati, L.; Bozzo, E.; Ghirlanda, G.; Maiorano, E.; Nicastro, L.; Rossi, A.; Vinciguerra, S.; Frontera, F.; et al. THESEUS: A Key Space Mission Concept for Multi-Messenger Astrophysics. Adv. Space Res. 2018, 62, 662–682. [Google Scholar] [CrossRef] [Green Version]
- Amati, L.; O’Brien, P.; Götz, D.; Bozzo, E.; Santangelo, A.; Tanvir, N.; Frontera, F.; Mereghetti, S.; Osborne, J.P.; Blain, A.; et al. The THESEUS Space Mission: Science Goals, Requirements and Mission Concept. Exp. Astron. 2021, 52, 183–218. [Google Scholar] [CrossRef]
- Stratta, G.; Amati, L.; Branchesi, M.; Ciolfi, R.; Tanvir, N.; Bozzo, E.; Götz, D.; O’Brien, P.; Santangelo, A. Breakthrough Multi-Messenger Astrophysics with the THESEUS Space Mission. Galaxies 2022, 10, 60. [Google Scholar] [CrossRef]
- Abdalla, E.; Abellán, G.F.; Aboubrahim, A.; Agnello, A.; Akarsu, Ö.; Akrami, Y.; Alestas, G.; Aloni, D.; Amendola, L.; Anchordoqui, L.A.; et al. Cosmology Intertwined: A Review of the Particle Physics, Astrophysics, and Cosmology Associated with the Cosmological Tensions and Anomalies. J. High Energy Astrophys. 2022, 34, 49–211. [Google Scholar] [CrossRef]
- Di Valentino, E.; Melchiorri, A.; Silk, J. Investigating Cosmic Discordance. Astrophys. J. 2021, 908, L9. [Google Scholar] [CrossRef]
- Copeland, E.J.; Sami, M.; Tsujikawa, S. Dynamics of Dark Energy. Int. J. Mod. Phys. D 2006, 15, 1753–1935. [Google Scholar] [CrossRef] [Green Version]
- Pan, S.; Yang, W.; Di Valentino, E.; Saridakis, E.N.; Chakraborty, S. Interacting Scenarios with Dynamical Dark Energy: Observational Constraints and Alleviation of the H0 Tension. Phys. Rev. D 2019, 100, 103520. [Google Scholar] [CrossRef] [Green Version]
- Gao, L.-Y.; Zhao, Z.-W.; Xue, S.-S.; Zhang, X. Relieving the H_0 Tension with a New Interacting Dark Energy Model. J. Cosmol. Astropart. Phys. 2021, 2021, 005. [Google Scholar] [CrossRef]
- Valiviita, J.; Majerotto, E.; Maartens, R. Large-Scale Instability in Interacting Dark Energy and Dark Matter Fluids. J. Cosmol. Astropart. Phys. 2008, 2008, 020. [Google Scholar] [CrossRef] [Green Version]
- Di Valentino, E.; Melchiorri, A.; Mena, O.; Vagnozzi, S. Interacting Dark Energy in the Early 2020s: A Promising Solution to the H_0 and Cosmic Shear Tensions. Phys. Dark Universe 2020, 30, 100666. [Google Scholar] [CrossRef]
- Jin, S.-J.; Zhu, R.-Q.; Wang, L.-F.; Li, H.-L.; Zhang, J.-F.; Zhang, X. Impacts of Gravitational-Wave Standard Siren Observations from Einstein Telescope and Cosmic Explorer on Weighing Neutrinos in Interacting Dark Energy Models. Commun. Theor. Phys. 2022, 74, 105404. [Google Scholar] [CrossRef]
- Weinberg, S. Asymptotically Safe Inflation. Phys. Rev. D 2010, 81, 083535. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Shafieloo, A. Evidence for Emergent Dark Energy. Astrophys. J. 2020, 902, 58. [Google Scholar] [CrossRef]
- Li, X.; Shafieloo, A. A Simple Phenomenological Emergent Dark Energy Model Can Resolve the Hubble Tension. Astrophys. J. 2019, 883, L3. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Di Valentino, E.; Pan, S.; Shafieloo, A.; Li, X. Generalized Emergent Dark Energy Model and the Hubble Constant Tension. Phys. Rev. D 2021, 104, 063521. [Google Scholar] [CrossRef]
- Califano, M.; de Martino, I.; Vernieri, D.; Capozziello, S. Exploiting the Einstein Telescope to Solve the Hubble Tension. arXiv 2022, arXiv:2208.13999. [Google Scholar]
- Califano, M.; de Martino, I.; Vernieri, D.; Capozziello, S. Constraining ΛCDM Cosmological Parameters with Einstein Telescope Mock Data. Mon. Not. R. Astron. Soc. 2022, 518, 3372–3385. [Google Scholar] [CrossRef]
- Vangioni, E.; Olive, K.A.; Prestegard, T.; Silk, J.; Petitjean, P.; Mandic, V. The Impact of Star Formation and Gamma-Ray Burst Rates at High Redshift on Cosmic Chemical Evolution and Reionization. Mon. Not. R. Astron. Soc. 2015, 447, 2575–2587. [Google Scholar] [CrossRef] [Green Version]
- O’Shaughnessy, R.; Belczynski, K.; Kalogera, V. Short Gamma-Ray Bursts and Binary Mergers in Spiral and Elliptical Galaxies: Redshift Distribution and Hosts. Astrophys. J. 2008, 675, 566–585. [Google Scholar] [CrossRef] [Green Version]
- Dalal, N.; Holz, D.E.; Hughes, S.A.; Jain, B. Short GRB and Binary Black Hole Standard Sirens as a Probe of Dark Energy. Phys. Rev. D 2006, 74, 063006. [Google Scholar] [CrossRef] [Green Version]
- Speri, L.; Tamanini, N.; Caldwell, R.R.; Gair, J.R.; Wang, B. Testing the Quasar Hubble Diagram with LISA Standard Sirens. Phys. Rev. D 2021, 103, 083526. [Google Scholar] [CrossRef]
- Hjorth, J.; Levan, A.J.; Tanvir, N.R.; Lyman, J.D.; Wojtak, R.; Schrøder, S.L.; Mandel, I.; Gall, C.; Bruun, S.H. The Distance to NGC 4993: The Host Galaxy of the Gravitational-wave Event GW170817. Astrophys. J. 2017, 848, L31. [Google Scholar] [CrossRef] [Green Version]
- Belgacem, E.; Dirian, Y.; Foffa, S.; Howell, E.J.; Maggiore, M.; Regimbau, T. Cosmology and Dark Energy from Joint Gravitational Wave-GRB Observations. J. Cosmol. Astropart. Phys. 2019, 2019, 015. [Google Scholar] [CrossRef] [Green Version]
- Mandel, I.; Farr, W.M.; Gair, J.R. Extracting Distribution Parameters from Multiple Uncertain Observations with Selection Biases. Mon. Not. R. Astron. Soc. 2019, 486, 1086–1093. [Google Scholar] [CrossRef] [Green Version]
- Moresco, M.; Amati, L.; Amendola, L.; Birrer, S.; Blakeslee, J.P.; Cantiello, M.; Cimatti, A.; Darling, J.; Della Valle, M.; Fishbach, M.; et al. Unveiling the Universe with emerging cosmological probes. Living Rev. Relativ. 2022, 25, 6. [Google Scholar] [CrossRef]
Non-FlatCDM | ||||
- | ||||
Bright Sirens | - | |||
Dark Sirens | - | |||
Non-FlatCDM | ||||
Bright Sirens | ||||
Dark Sirens | ||||
Interacting Dark Energy | ||||
- | ||||
Bright Sirens | - | |||
Dark Sirens | - | |||
Time-Varying Gravitational Constant | ||||
- | ||||
Bright Sirens | - | |||
Dark Sirens | - | |||
Emergent Dark Energy | ||||
- | ||||
Bright Sirens | - | |||
Dark Sirens | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Califano, M.; de Martino, I.; Vernieri, D.; Capozziello, S. Forecasts for ΛCDM and Dark Energy Models through Einstein Telescope Standard Sirens. Phys. Sci. Forum 2023, 7, 20. https://doi.org/10.3390/ECU2023-14032
Califano M, de Martino I, Vernieri D, Capozziello S. Forecasts for ΛCDM and Dark Energy Models through Einstein Telescope Standard Sirens. Physical Sciences Forum. 2023; 7(1):20. https://doi.org/10.3390/ECU2023-14032
Chicago/Turabian StyleCalifano, Matteo, Ivan de Martino, Daniele Vernieri, and Salvatore Capozziello. 2023. "Forecasts for ΛCDM and Dark Energy Models through Einstein Telescope Standard Sirens" Physical Sciences Forum 7, no. 1: 20. https://doi.org/10.3390/ECU2023-14032
APA StyleCalifano, M., de Martino, I., Vernieri, D., & Capozziello, S. (2023). Forecasts for ΛCDM and Dark Energy Models through Einstein Telescope Standard Sirens. Physical Sciences Forum, 7(1), 20. https://doi.org/10.3390/ECU2023-14032