Effect of Sn Doping on the Photocatalytic Properties of ZnO †
Abstract
:1. Introduction
2. Experimental
Photocatalytic Measurements
3. Results and Discussion
3.1. Structural Proprieties
Grain Size
3.2. Morphological Properties
3.3. Optical Characterization
3.3.1. UV-Visible
3.3.2. Determination of the Optical Gap
3.4. Raman Spectroscopy
3.5. Photocatalysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pandiyan, R.; Dharmaraj, S.; Ayyaru, S.; Sugumaran, A.; Somasundaram, J.; Kazi, A.S.; Samiappan, S.; Ashokkumar, V.; Ngamcharussrivichai, C. Ameliorative photocatalytic dye degradation of hydrothermally synthesized bimetallic Ag-Sn hybrid nanocomposite treated upon domestic wastewater under visible light irradiation. J. Hazard. Mater. 2022, 421, 126734. [Google Scholar] [CrossRef] [PubMed]
- Kaus, H.M.; Rithwan, F.; Adnan, R.; Ibrahim, L.; Thongmee, S.; Yusoff, M. Effective Strategies, Mechanisms, and Photocatalytic Efficiency of Semiconductor Nanomaterials Incorporating rGO for Environmental Contaminant Degradation. Catalysts 2021, 11, 302. [Google Scholar] [CrossRef]
- Ganesh, V.; Yahia, I.S.; AlFaify, S.; Shkir, M. Sn-doped ZnO nanocrystalline thin films with enhanced linear and nonlinear optical properties for optoelectronic applications. J. Phys. Chem. Solids 2017, 100, 115–125. [Google Scholar] [CrossRef]
- Lin, J.; Mo, L.; Xu, S.; Wei, Q.; Fu, Y.; Lin, X.; Xiao, X. Unlocking photoredox selective organic transformation over metal-free 2D transition metal chalcogenides-MXene heterostructures. J. Catal. 2020, 391, 485–496. [Google Scholar] [CrossRef]
- Roguai, S.; Djelloul, A. Photocatalytic degradation of methylene blue using sprayed Mg diluted ZnO heterostructure thin films photocatalysts, Reaction Kinetics. Mech. Catal. 2021, 132, 1225–1244. [Google Scholar]
- Wang, J.; Pan, H.; Xu, X.; Jin, H.; Ma, W.; Xiong, S.; Bao, Q.; Tang, Z.; Ma, Z. Li-Doped ZnO Electron Transport Layer for Improved Performance and Photostability of Organic Solar Cells. ACS Appl. Mater. Interfaces 2022, 14, 12450–12460. [Google Scholar] [CrossRef] [PubMed]
- Patil, N.B.; Nimbalkar, A.R.; Patil, M.G. ZnO thin film prepared by a sol-gel spin coating technique for NO2 detection. Mater. Sci. Eng. B 2018, 227, 53–60. [Google Scholar] [CrossRef]
- Boufelgha, F.; Brihi, N.; Labreche, F.; Guendouz, H.; Barbadj, A. Enhanced of blue and green emission by Ce–ZnO thin films prepared by sol–gel technique. Semiconductors 2022, 56, 275–280. [Google Scholar] [CrossRef]
- Abbas, F.; Bensaha, R. Effect of annealing time on structural and optical proprieties of mercury (Hg+2) doped TiO2 thin films elaborated by sol-gel method for future photo-catalytic application. Opt. Int. J. Light Electron Opt. 2021, 247, 167846. [Google Scholar] [CrossRef]
- Venkatesh, N.; Aravindan, S.; Ramki, K.; Murugadoss, G.; Thangamuthu, R.; Sakthivel, P. Sunlight-driven enhanced photocatalytic activity of bandgap narrowing Sn-doped ZnO nanoparticles. Environ. Sci. Pollut. Res. 2021, 28, 16792–16803. [Google Scholar] [CrossRef]
- Sarica, E.; Gunes, I.; Akyuz, I.; Bilgin, V.; Erturk, K. Sol-gel derived ZnO:Sn thin films and fabrication of n-ZnO:Sn/p-Si heterostructure. Opt. Mater. 2021, 118, 111283. [Google Scholar] [CrossRef]
- Özgür, Ü.; Alivov, Y.I.; Liu, C.; Teke, A.; Reshchikov, M.A.; Doğan, S.; Avrutin, V.; Cho, S.-J.; Morkoç, H. A comprehensive review of ZnO materials and devices. J. Appl. Phys. 2005, 98, 041301. [Google Scholar]
- Ajili, M.; Castagné, M.; Turki, N.K. Study on the doping effect of Sn-doped ZnO thin films. Superlattices Microstruct. 2013, 53, 213–222. [Google Scholar] [CrossRef]
- Verma, M.; Dwivedi, P.K.; Das, B. Structure–property correlation of pure and Sn-doped ZnO nanocrystalline materials prepared by co-precipitation. J. Exp. Nanosci. 2015, 10, 438–448. [Google Scholar] [CrossRef]
- Dhamodharan, P.; Manoharan, C.; Dhanapandian, S.; Bououdina, M.; Ramalingam, S. Preparation and characterization of spray deposited Sn-doped ZnO thin films onto ITO subtracts as photoanode in dye sensitized solar cell. J. Mater. Sci. Mater. Electron. 2015, 26, 4830–4839. [Google Scholar] [CrossRef]
- Moss, T.S. The Interpretation of the Properties of Indium Antimonide. Proc. Phys. Soc. B 1954, 67, 775–782. [Google Scholar] [CrossRef]
- Andolsi, Y.; Chaabouni, F.; Abaab, M. Sn doping effects on properties of ZnO thin films deposited by RF magnetron sputtering using a powder target. J. Mater. Sci. Mater. Electron. 2017, 28, 8347–8358. [Google Scholar] [CrossRef]
- Horzum, S.; Bulduk, E.; Şener, D.; Serin, T. Comparison of characteristic properties of Al, Ga, and In-doped ZnO thin films formed by sol-gel method. Superlattices Microstruct. 2021, 159, 107034. [Google Scholar] [CrossRef]
- Rajalakshmi, M.; Arora, A.K.; Bendre, B.S.; Mahamuni, S. Optical phonon confinement in zinc oxide nanoparticles. J. Appl. Phys. 2000, 87, 2445–2448. [Google Scholar] [CrossRef]
- Pradhan, A.K.; Zhang, K.; Loutts, G.; Roy, U.N.; Cui, Y.; Burger, A. Structural and spectroscopic characteristics of ZnO and ZnO:Er3+ nanostructures. J. Phys. Condens. Matter 2004, 16, 7123–7129. [Google Scholar] [CrossRef]
- Shah, A.A.; Bhatti, M.A.; Tahira, A.; Chandio, A.D.; Channa, I.A.; Sahito, A.G.; Chalangar, S.E.; Willander, M. Omer Nur and Zafar Hussain Ibupoto, Facile synthesis of copper doped ZnO nanorods for the efficient photo degradation of methylene blue and methyl orange. Ceram. Int. 2020, 46, 9997–10005. [Google Scholar] [CrossRef]
2θ (°) | d (Å) | (hkl) | D (nm) | Lattice Parameter (Å) | |
---|---|---|---|---|---|
Un-doped ZnO | 34.36 | 2.60 | (002) | 21.69 | a = b = 3.24, c = 5.2 |
2% Sn-doped | 34.48 | 2.59 | (002) | 15.78 | a = b = 3.25, c = 5.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boufelgha, F.; Zellagui, R.; Benachour, M.-C.; Dehdouh, H.; Labrèche, F.; Brihi, N. Effect of Sn Doping on the Photocatalytic Properties of ZnO. Phys. Sci. Forum 2023, 6, 7. https://doi.org/10.3390/psf2023006007
Boufelgha F, Zellagui R, Benachour M-C, Dehdouh H, Labrèche F, Brihi N. Effect of Sn Doping on the Photocatalytic Properties of ZnO. Physical Sciences Forum. 2023; 6(1):7. https://doi.org/10.3390/psf2023006007
Chicago/Turabian StyleBoufelgha, Fayssal, Rahima Zellagui, Mohamed-Cherif Benachour, Heider Dehdouh, Fayçal Labrèche, and Nourddine Brihi. 2023. "Effect of Sn Doping on the Photocatalytic Properties of ZnO" Physical Sciences Forum 6, no. 1: 7. https://doi.org/10.3390/psf2023006007
APA StyleBoufelgha, F., Zellagui, R., Benachour, M. -C., Dehdouh, H., Labrèche, F., & Brihi, N. (2023). Effect of Sn Doping on the Photocatalytic Properties of ZnO. Physical Sciences Forum, 6(1), 7. https://doi.org/10.3390/psf2023006007