Adaptive Importance Sampling for Equivariant Group-Convolution Computation †
Abstract
:1. Introduction and Motivations
2. Group Convolution and Expectation
3. Adaptive Importance Sampling
3.1. Monte Carlo Estimator and Convergence
3.2. Natural Gradient Descent
3.3. About IGO Algorithms
4. Application to -Convolutions
4.1. Fisher Information Metric
4.2. Numerical Experiments
4.3. Extension to -Convolutions
5. Monte Carlo Methods in the Quantum Set-Up
6. Conclusions and Further Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bronstein, M.M.; Bruna, J.; Cohen, T.; Veličković, P. Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges. arXiv 2021, arXiv:2104.13478. [Google Scholar]
- Finzi, M.; Stanton, S.; Izmailov, P.; Wilson, A.G. Generalizing Convolutional Neural Networks for Equivariance to Lie Groups on Arbitrary Continuous Data. arXiv 2020, arXiv:2002.12880. [Google Scholar]
- Lafarge, M.W.; Bekkers, E.J.; Pluim, J.P.W.; Duits, R.; Veta, M. Roto-Translation Equivariant Convolutional Networks: Application to Histopathology Image Analysis. arXiv 2020, arXiv:2002.08725. [Google Scholar] [CrossRef] [PubMed]
- Cohen, T.S.; Geiger, M.; Köhler, J.; Welling, M. Spherical CNNs. arXiv 2018, arXiv:1801.10130. [Google Scholar]
- Gerken, J.E.; Aronsson, J.; Carlsson, O.; Linander, H.; Ohlsson, F.; Petersson, C.; Persson, D. Geometric Deep Learning and Equivariant Neural Networks. arXiv 2021, arXiv:2105.13926. [Google Scholar]
- Shorten, C.; Khoshgoftaar, T.M. A survey on Image Data Augmentation for Deep Learning. J. Big Data 2019, 6, 60. [Google Scholar] [CrossRef]
- Chen, S.; Dobriban, E.; Lee, J.H. A Group-Theoretic Framework for Data Augmentation. arXiv 2020, arXiv:1907.10905. [Google Scholar]
- Kondor, R.; Trivedi, S. On the Generalization of Equivariance and Convolution in Neural Networks to the Action of Compact Groups. In Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; Dy, J., Krause, A., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2018; Volume 80, pp. 2747–2755. [Google Scholar]
- Lagrave, P.Y.; Cabanes, Y.; Barbaresco, F. SU(1,1) Equivariant Neural Networks and Application to Robust Toeplitz Hermitian Positive Definite Matrix Classification. In Geometric Science of Information; Nielsen, F., Barbaresco, F., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 577–584. [Google Scholar]
- Finzi, M.; Welling, M.; Wilson, A.G. A Practical Method for Constructing Equivariant Multilayer Perceptrons for Arbitrary Matrix Groups. arXiv 2021, arXiv:2104.09459. [Google Scholar]
- Cohen, T.S.; Geiger, M.; Weiler, M. A General Theory of Equivariant CNNs on Homogeneous Spaces. In Advances in Neural Information Processing Systems; Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R., Eds.; Curran Associates, Inc.: New York, NY, USA, 2019; Volume 32, pp. 9145–9156. [Google Scholar]
- Cohen, T.; Welling, M. Group Equivariant Convolutional Networks. In Proceedings of the 33rd International Conference on Machine Learning, New York, NY, USA, 19–24 June 2016; Balcan, M.F., Weinberger, K.Q., Eds.; PMLR: New York, NY, USA, 2016; Volume 48, pp. 2990–2999. [Google Scholar]
- Egloff, D.; Leippold, M. Quantile estimation with adaptive importance sampling. Ann. Stat. 2010, 38, 1244–1278. [Google Scholar] [CrossRef] [Green Version]
- Ollivier, Y.; Arnold, L.; Auger, A.; Hansen, N. Information-Geometric Optimization Algorithms: A Unifying Picture via Invariance Principles. J. Mach. Learn. Res. 2011, 18, 1–65. [Google Scholar] [CrossRef]
- Lagrave, P.Y.; Barbaresco, F. Generalized SU(1,1) Equivariant Convolution on Fock-Bargmann Spaces for Robust Radar Doppler Signal Classification. 2021; working paper or preprint. [Google Scholar]
- von Mises, R. Uber die “Ganzzahligkeit” der Atomgewicht und verwandte Fragen. Phys. Z. 1981, 19, 490–500. [Google Scholar]
- Amari, S.I.; Barndorff-Nielsen, O.E.; Kass, R.E.; Lauritzen, S.L.; Rao, C.R. Differential Geometry in Statistical Inference; Lecture Notes–Monograph Series; Institute of Mathematical Statistics: Hayward, CA, USA, 1987; Volume 10, pp. 1–240. [Google Scholar]
- Montanaro, A. Quantum speedup of Monte Carlo methods. Proc. R. Soc. Math. Phys. Eng. Sci. 2015, 471, 20150301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herbert, S. Quantum Monte-Carlo Integration: The Full Advantage in Minimal Circuit Depth. arXiv 2021, arXiv:2105.09100. [Google Scholar] [CrossRef]
- An, D.; Linden, N.; Liu, J.P.; Montanaro, A.; Shao, C.; Wang, J. Quantum-accelerated multilevel Monte Carlo methods for stochastic differential equations in mathematical finance. Quantum 2021, 5, 481. [Google Scholar] [CrossRef]
- Castelazo, G.; Nguyen, Q.T.; Palma, G.D.; Englund, D.; Lloyd, S.; Kiani, B.T. Quantum algorithms for group convolution, cross-correlation, and equivariant transformations. arXiv 2021, arXiv:2109.11330. [Google Scholar] [CrossRef]
- Botev, Z.; Ridder, A. Variance Reduction. In Wiley StatsRef: Statistics Reference Online; Wiley: Hoboken, NJ, USA, 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Jourdain, B. Adaptive variance reduction techniques in finance. Adv. Financ. Model. 2009, 8, 205. [Google Scholar]
- Robbins, H.; Monro, S. A Stochastic Approximation Method. Ann. Math. Stat. 1951, 22, 400–407. [Google Scholar] [CrossRef]
- Martin, S.; Lagrave, P.Y. On the Benefits of SO(3)-Equivariant Neural Networks for Spherical Image Processing. 2022, working paper or preprint. 2022; working paper or preprint. [Google Scholar]
- Kent, J.T. The Fisher-Bingham Distribution on the Sphere. J. R. Stat. Soc. Ser. (Methodol.) 1982, 44, 71–80. [Google Scholar] [CrossRef]
- Niederreiter, H. Random Number Generation and Quasi-Monte Carlo Methods; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1992. [Google Scholar] [CrossRef] [Green Version]
- Sobol’, I. On the distribution of points in a cube and the approx imate evaluation of integrals. USSR Comput. Math. Math. Phys. 1967, 7, 86–112. [Google Scholar] [CrossRef]
- Orús, R.; Mugel, S.; Lizaso, E. Quantum computing for finance: Overview and prospects. Rev. Phys. 2019, 4, 100028. [Google Scholar] [CrossRef]
- Brassard, G.; Høyer, P.; Mosca, M.; Tapp, A. Quantum amplitude amplification and estimation. Contemp. Math. 2002, 305, 53–74. [Google Scholar] [CrossRef] [Green Version]
- Barbaresco, F. Lie Group Statistics and Lie Group Machine Learning Based on Souriau Lie Groups Thermodynamics & Koszul-Souriau-Fisher Metric: New Entropy Definition as Generalized Casimir Invariant Function in Coadjoint Representation. Entropy 2020, 22, 642. [Google Scholar] [CrossRef] [PubMed]
- Larocca, M.; Sauvage, F.; Sbahi, F.M.; Verdon, G.; Coles, P.J.; Cerezo, M. Group-Invariant Quantum Machine Learning. arXiv 2022, arXiv:2205.02261. [Google Scholar] [CrossRef]
- Meyer, J.J.; Mularski, M.; Gil-Fuster, E.; Mele, A.A.; Arzani, F.; Wilms, A.; Eisert, J. Exploiting symmetry in variational quantum machine learning. arXiv 2022, arXiv:2205.06217. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lagrave, P.-Y.; Barbaresco, F. Adaptive Importance Sampling for Equivariant Group-Convolution Computation. Phys. Sci. Forum 2022, 5, 17. https://doi.org/10.3390/psf2022005017
Lagrave P-Y, Barbaresco F. Adaptive Importance Sampling for Equivariant Group-Convolution Computation. Physical Sciences Forum. 2022; 5(1):17. https://doi.org/10.3390/psf2022005017
Chicago/Turabian StyleLagrave, Pierre-Yves, and Frédéric Barbaresco. 2022. "Adaptive Importance Sampling for Equivariant Group-Convolution Computation" Physical Sciences Forum 5, no. 1: 17. https://doi.org/10.3390/psf2022005017
APA StyleLagrave, P. -Y., & Barbaresco, F. (2022). Adaptive Importance Sampling for Equivariant Group-Convolution Computation. Physical Sciences Forum, 5(1), 17. https://doi.org/10.3390/psf2022005017