Trans-Dimensional Diffusive Nested Sampling for Metabolic Network Inference †
Abstract
1. Introduction
- Structural uncertainty—introduced, for example, by gap-filling heuristics or by unknown regulation mechanisms;
- Operational uncertainty—for instance, even when “complete” structural knowledge is available, gene expression levels, enzyme activities and metabolic concentrations depend on the in vivo conditions applied, which may cause the catalyzed reactions or whole pathways to operate at different capacities or even in reverse.
2. Materials and Methods
2.1. 13C Metabolic Flux Analysis
2.2. Implementation
3. Results
3.1. Problem Statement
3.2. TDNS Hyperparameters, Diagnostics and Run Times
3.3. Metabolic Network Inference Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Orth, J.D.; Thiele, I.; Palsson, B.Ø. What is flux balance analysis? Nat. Biotechnol. 2010, 28, 245–248. [Google Scholar] [CrossRef]
- Wiechert, W. 13C metabolic flux analysis. Metab. Eng. 2001, 3, 195–206. [Google Scholar] [CrossRef] [PubMed]
- Saa, P.A.; Nielsen, L.K. Formulation, construction and analysis of kinetic models of metabolism: A review of modelling frameworks. Biotechnol. Adv. 2017, 35, 981–1003. [Google Scholar] [CrossRef]
- Bernstein, D.B.; Sulheim, S.; Almaas, E.; Segrè, D. Addressing uncertainty in genome-scale metabolic model reconstruction and analysis. Genome Biol. 2021, 22, 64. [Google Scholar] [CrossRef]
- Theorell, A.; Jadebeck, J.F.; Wiechert, W.; McFadden, J.; Nöh, K. Rethinking 13C-metabolic flux analysis – the Bayesian way of flux inference. Metab. Eng. 2024, 83, 137–149. [Google Scholar] [CrossRef]
- Friel, N.; Wyse, J. Estimating the evidence—A review. Stat. Neerl. 2012, 66, 288–308. [Google Scholar] [CrossRef]
- Hoeting, J.A.; Madigan, D.; Raftery, A.E.; Volinsky, C.T. Bayesian model averaging: A tutorial. Stat. Sci. 1999, 14, 382–417. [Google Scholar] [CrossRef]
- Borah Slater, K.; Beyß, M.; Xu, Y.; Barber, J.; Costa, C.; Newcombe, J.; Theorell, A.; Bailey, M.J.; Beste, D.J.V.; McFadden, J.; et al. One-shot 13C15N-metabolic flux analysis for simultaneous quantification of carbon and nitrogen flux. Mol. Syst. Biol. 2023, 19, e11099. [Google Scholar] [CrossRef]
- Skilling, J. Nested sampling for general Bayesian computation. Bayesian Anal. 2006, 1, 833–859. [Google Scholar] [CrossRef]
- Ashton, G.; Bernstein, N.; Buchner, J.; Chen, X.; Csányi, G.; Fowlie, A.; Feroz, F.; Griffiths, M.; Handley, W.; Habeck, M.; et al. Nested sampling for physical scientists. Nat. Rev. Methods Prim. 2022, 2, 39. [Google Scholar] [CrossRef]
- Buchner, J. Nested sampling methods. Stat. Surv. 2023, 17, 169–215. [Google Scholar] [CrossRef]
- Handley, W.J.; Hobson, M.P.; Lasenby, A.N. polychord: Next-generation nested sampling. Mon. Not. R. Astron. Soc. 2015, 453, 4384–4398. [Google Scholar] [CrossRef]
- Trassinelli, M. Bayesian data analysis tools for atomic physics. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2017, 408, 301–312. [Google Scholar] [CrossRef]
- Feroz, F.; Hobson, M.P.; Cameron, E.; Pettitt, A.N. Importance nested sampling and the MultiNest algorithm. Open J. Astrophys. 2019, 2. [Google Scholar] [CrossRef]
- Higson, E.; Handley, W.; Hobson, M.; Lasenby, A. Dynamic nested sampling: An improved algorithm for parameter estimation and evidence calculation. Stat. Comput. 2019, 29, 891–913. [Google Scholar] [CrossRef]
- Speagle, J.S. dynesty: A dynamic nested sampling package for estimating Bayesian posteriors and evidences. Mon. Not. R. Astron. Soc. 2020, 493, 3132–3158. [Google Scholar] [CrossRef]
- Buchner, J. UltraNest—A robust, general purpose Bayesian inference engine. J. Open Source Softw. 2021, 6, 3001. [Google Scholar] [CrossRef]
- Jadebeck, J.F.; Wiechert, W.; Nöh, K. Practical sampling of constraint-based models: Optimized thinning boosts CHRR performance. PLoS Comput. Biol. 2023, 19, e1011378. [Google Scholar] [CrossRef]
- Green, P.J. Reversible Jump Markov Chain Monte Carlo computation and Bayesian model determination. Biometrika 1995, 82, 711–732. [Google Scholar] [CrossRef]
- Mitosch, K.; Beyß, M.; Phapale, P.; Drotleff, B.; Nöh, K.; Alexandrov, T.; Patil, K.R.; Typas, A. A pathogen-specific isotope tracing approach reveals metabolic activities and fluxes of intracellular Salmonella. PLoS Biol. 2023, 21, e3002198. [Google Scholar] [CrossRef] [PubMed]
- Brewer, B.J. Inference for trans-dimensional Bayesian models with diffusive nested sampling. arXiv 2015, arXiv:1411.3921v3. [Google Scholar] [CrossRef]
- Brewer, B.J.; Huijser, D.; Lewis, G.F. Trans-dimensional Bayesian inference for gravitational lens substructures. Mon. Not. R. Astron. Soc. 2015, 455, 1819–1829. [Google Scholar] [CrossRef]
- Brewer, B.J.; Pártay, L.B.; Csányi, G. Diffusive nested sampling. Stat. Comput. 2010, 21, 649–656. [Google Scholar] [CrossRef]
- Wiechert, W.; Möllney, M.; Isermann, N.; Wurzel, M.; de Graaf, A.A. Bidirectional reaction steps in metabolic networks: III. Explicit solution and analysis of isotopomer labeling systems. Biotechnol. Bioeng. 1999, 66, 69–85. [Google Scholar] [CrossRef]
- Wiechert, W.; Nöh, K. Quantitative metabolic flux analysis based on isotope labeling. In Metabolic Engineering: Concepts and Applications; Nielsen, J., Stephanopoulos, G., Lee, S.Y., Eds.; Wiley: Weinheim, Germany, 2021; Chapter 3; pp. 73–136. [Google Scholar] [CrossRef]
- Weitzel, M.; Nöh, K.; Dalman, T.; Niedenführ, S.; Stute, B.; Wiechert, W. 13CFLUX2—High-performance software suite for 13C-metabolic flux analysis. Bioinformatics 2012, 29, 143–145. [Google Scholar] [CrossRef]
- Theorell, A.; Nöh, K. Reversible jump MCMC for multi-model inference in metabolic flux analysis. Bioinformatics 2019, 36, 232–240. [Google Scholar] [CrossRef]
- Brewer, B.J.; Foreman-Mackey, D. DNest4: Diffusive nested sampling in C++ and Python. J. Stat. Softw. 2018, 86, 1–33. [Google Scholar] [CrossRef]
- Jadebeck, J.F.; Theorell, A.; Leweke, S.; Nöh, K. HOPS: High-performance library for (non-) uniform sampling of convex-constrained models. Bioinformatics 2021, 37, 1776–1777. [Google Scholar] [CrossRef]
- Crown, S.B.; Long, C.P.; Antoniewicz, M.R. Integrated 13C-metabolic flux analysis of 14 parallel labeling experiments in Escherichia coli. Metab. Eng. 2015, 28, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Beyß, M.; Azzouzi, S.; Weitzel, M.; Wiechert, W.; Nöh, K. The design of FluxML: A universal modeling language for 13C metabolic flux analysis. Front. Microbiol. 2019, 10, 1022. [Google Scholar] [CrossRef] [PubMed]
- Zamboni, N.; Fendt, S.M.; Rühl, M.; Sauer, U. 13C-based metabolic flux analysis. Nat. Protoc. 2009, 4, 878–892. [Google Scholar] [CrossRef] [PubMed]
- Antoniewicz, M.R. A guide to metabolic flux analysis in metabolic engineering: Methods, tools and applications. Metab. Eng. 2021, 63, 2–12. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Baryshnikov, A.; Handley, W. Aeons: Approximating the end of nested sampling. arXiv 2023, arXiv:2312.00294v1. [Google Scholar] [CrossRef]
Exp. | Max Number of Levels | New Level Interval | Step Size | Model Jump Ratio | Param. Switch Prob. | ||
---|---|---|---|---|---|---|---|
1 | 120 | 50,000 | 10 | 100 | 0.025 | 0.5 | 0.1 |
2 | 150 | 50,000 | 10 | 100 | 0.025 | 0.5 | 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jadebeck, J.F.; Wiechert, W.; Nöh, K. Trans-Dimensional Diffusive Nested Sampling for Metabolic Network Inference. Phys. Sci. Forum 2025, 12, 5. https://doi.org/10.3390/psf2025012005
Jadebeck JF, Wiechert W, Nöh K. Trans-Dimensional Diffusive Nested Sampling for Metabolic Network Inference. Physical Sciences Forum. 2025; 12(1):5. https://doi.org/10.3390/psf2025012005
Chicago/Turabian StyleJadebeck, Johann Fredrik, Wolfgang Wiechert, and Katharina Nöh. 2025. "Trans-Dimensional Diffusive Nested Sampling for Metabolic Network Inference" Physical Sciences Forum 12, no. 1: 5. https://doi.org/10.3390/psf2025012005
APA StyleJadebeck, J. F., Wiechert, W., & Nöh, K. (2025). Trans-Dimensional Diffusive Nested Sampling for Metabolic Network Inference. Physical Sciences Forum, 12(1), 5. https://doi.org/10.3390/psf2025012005