Nonparametric FBST for Validating Linear Models †
Abstract
1. Introduction
2. Materials and Methods
2.1. Full Bayesian Significance Test (FBST)
- Delimit the set of elements in that are more likely than those in . That is, if is the posterior density of given the data ,
- Obtain the Bayesian evidence value.
- Reject if for a previously specified significance level .
2.2. Gaussian Processes (GPs)
2.3. Pragmatic Hypotheses
3. Results
- When is a finite set, the FBST does not reject if and only ifwhere and is the size of .
- When is an infinite set, the FBST does not reject if and only if
- When is a finite set, the FBST does not reject if and only ifwhere and is a diagonal matrix formed by the vector .
- When is an infinite set, the FBST does not reject if and only ifwhere and is a diagonal matrix formed by the vector .
4. Application: Water Droplet Experiment
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| FBST | Full Bayesian Significance Test |
| GFBST | Generalized Full Bayesian Significance Test |
| GP | Gaussian Process |
| HPD | Highest Posterior Density |
| WRSS | Weighted Residual Sum of Squares |
Appendix A. Proofs
References
- Kershaw, J.; Kashikura, K.; Zhang, X.; Abe, S.; Kanno, I. Bayesian technique for investigating linearity in event-related BOLD fMRI. Magn. Reson. Med. 2001, 45, 1081–1094. [Google Scholar] [CrossRef] [PubMed]
- Spiegelhalter, D.J.; Best, N.G.; Carlin, B.P.; Van Der Linde, A. Bayesian measures of model complexity and fit. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 2002, 64, 583–639. [Google Scholar] [CrossRef]
- de Bragança Pereira, C.A.; Stern, J.M.; Wechsler, S. Can a significance test be genuinely Bayesian? Bayesian Anal. 2008, 3, 79–100. [Google Scholar] [CrossRef]
- Corrêa Filho, F.P.T. Nonparametric Tests for Pólya Trees: Non-Parametric Versions of the FBST. Master’s Thesis, Institute of Mathematics and Statistics, University of São Paulo, São Paulo, Brazil, 2024. [Google Scholar]
- Liu, Z.; Li, Z.; Wang, J.; He, Y. Full Bayesian Significance Testing for Neural Networks. arXiv 2024, arXiv:2401.13335. [Google Scholar] [CrossRef]
- Rasmussen, C.E.; Williams, C.K.I. Gaussian Processes for Machine Learning; The MIT Press: Cambridge, MA, USA, 2006. [Google Scholar]
- Esteves, L.G.; Izbicki, R.; Stern, J.M.; Stern, R.B. Pragmatic Hypotheses in the Evolution of Science. Entropy 2019, 21, 883. [Google Scholar] [CrossRef]
- Mulder, J. Bayesian Testing of Linear Versus Nonlinear Effects Using Gaussian Process Priors. Am. Stat. 2023, 77, 1–11. [Google Scholar] [CrossRef]
- Lassance, R.F.; Izbicki, R.; Stern, R.B. Adding imprecision to hypotheses: A Bayesian framework for testing practical significance in nonparametric settings. Int. J. Approx. Reason. 2025, 178, 109332. [Google Scholar] [CrossRef]
- Johnson, R.; Wichern, D. Applied Multivariate Statistical Analysis, 6th ed.; Prentice Hall India Learning Private Limited: Delhi, India, 2012; p. 163. [Google Scholar]
- Oakley, J. Eliciting Gaussian process priors for complex computer codes. J. R. Stat. Soc. Ser. D (Stat.) 2002, 51, 81–97. [Google Scholar] [CrossRef]
- Wang, X.; Berger, J.O. Estimating Shape Constrained Functions Using Gaussian Processes. SIAM/ASA J. Uncertain. Quantif. 2016, 4, 1–25. [Google Scholar] [CrossRef]
- Davies, R.B. Algorithm AS 155: The Distribution of a Linear Combination of χ2 Random Variables. Appl. Stat. 1980, 29, 323. [Google Scholar] [CrossRef]
- Ferguson, T.S. A Bayesian Analysis of Some Nonparametric Problems. Ann. Stat. 1973, 1, 209–230. [Google Scholar] [CrossRef]
- Duguid, H.A. A Study of the Evaporation Rates of Small Freely Falling Water Droplets. Master’s Thesis, Missouri University of Science and Technology, Rolla, MO, USA, 1969. [Google Scholar]
- Folland, G. Real Analysis: Modern Techniques and Their Applications, 2nd ed.; Pure and Applied Mathematics: A Wiley Series of Texts, Monographs and Tracts; Wiley: Hoboken, NJ, USA, 1999; p. 186. [Google Scholar]
- Esteves, L.G.; Izbicki, R.; Stern, J.M.; Stern, R.B. Logical coherence in Bayesian simultaneous three-way hypothesis tests. Int. J. Approx. Reason. 2023, 152, 297–309. [Google Scholar] [CrossRef]
- Gilitschenski, I.; Hanebeck, U.D. A robust computational test for overlap of two arbitrary-dimensional ellipsoids in fault-detection of Kalman filters. In Proceedings of the 2012 15th International Conference on Information Fusion, Singapore, 9–12 July 2012; pp. 396–401. [Google Scholar]


| Hypothesis | ||
|---|---|---|
| Assumption on | ||
| t is discrete and finite | 0.0446 | 0 |
| t is continuous | 0.0068 | 0 |
| Original Hypothesis | ||
|---|---|---|
| Assumption on | ||
| 1 | 0 | |
| 1 | 0 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lassance, R.F.L.; Stern, J.M.; Stern, R.B. Nonparametric FBST for Validating Linear Models. Phys. Sci. Forum 2025, 12, 2. https://doi.org/10.3390/psf2025012002
Lassance RFL, Stern JM, Stern RB. Nonparametric FBST for Validating Linear Models. Physical Sciences Forum. 2025; 12(1):2. https://doi.org/10.3390/psf2025012002
Chicago/Turabian StyleLassance, Rodrigo F. L., Julio M. Stern, and Rafael B. Stern. 2025. "Nonparametric FBST for Validating Linear Models" Physical Sciences Forum 12, no. 1: 2. https://doi.org/10.3390/psf2025012002
APA StyleLassance, R. F. L., Stern, J. M., & Stern, R. B. (2025). Nonparametric FBST for Validating Linear Models. Physical Sciences Forum, 12(1), 2. https://doi.org/10.3390/psf2025012002
