Inverse Bayesian Methods for Groundwater Vulnerability Assessment †
Abstract
1. Introduction
2. Theoretical Framework
3. Application
4. Analysis and Results
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brunton, S.L.; Proctor, J.L.; Kutz, J.N. Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc. Natl. Acad. Sci. USA 2016, 113, 3932–3937. [Google Scholar] [CrossRef]
- Niven, R.K.; Mohammad-Djafari, A.; Cordier, L.; Abel, M.; Quade, M. Bayesian identification of dynamical systems. Proceedings 2020, 33, 33. [Google Scholar] [CrossRef]
- Mangan, N.M.; Kutz, J.N.; Brunton, S.L.; Proctor, J.L. Model selection for dynamical systems via sparse regression and information criteria. Proc. R. Soc. A Math. Phys. Eng. Sci. 2017, 473, 20170009. [Google Scholar] [CrossRef]
- Rudy, S.H.; Brunton, S.L.; Proctor, J.L.; Kutz, J.N. Data-driven discovery of partial differential equations. Sci. Adv. 2017, 3, e1602614. [Google Scholar] [CrossRef] [PubMed]
- Mojabi, P.; LoVetri, J. Overview and classification of some regularization techniques for the Gauss-Newton inversion method applied to inverse scattering problems. IEEE Trans. Antennas Propag. 2009, 57, 2658–2665. [Google Scholar] [CrossRef]
- Hào, D.N.; Lesnic, D. Heuristic regularization methods for numerical differentiation. Comput. Math. Appl. 2012, 63, 816–826. [Google Scholar] [CrossRef]
- Guckenheimer, J.; Holmes, P. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields; Springer Science & Business Media: New York, NY, USA, 2013; Volume 42. [Google Scholar]
- Mohammad-Djafari, A.; Dumitru, M.J.D.S.P. Bayesian sparse solutions to linear inverse problems with non-stationary noise with Student-t priors. Digit. Signal Process. 2015, 47, 128–156. [Google Scholar] [CrossRef]
- National Research Council. Ground Water Vulnerability Assessment: Predicting Relative Contamination Potential Under Conditions of Uncertainty; The National Academies Press: Washington, DC, USA, 1993; 224p.
- Pavlis, M.; Cummins, E.; McDonnell, K. Groundwater vulnerability assessment of plant protection products: A review. Hum. Ecol. Risk Assess. 2010, 16, 621–650. [Google Scholar] [CrossRef]
- Taghavi, N.; Niven, R.K.; Paull, D.J.; Kramer, M. Groundwater vulnerability assessment: A review including new statistical and hybrid methods. Sci. Total Environ. 2022, 822, 153486. [Google Scholar] [CrossRef]
- Aller, L.; Truman, B.; Lehr, J.H. DRASTIC: A Standardized System for Evaluating Ground Water Pollution Potential Using Hydrogeologic Settings; Robert S. Kerr Environmental Research Laboratory, Office of Research And Development U.S. Environmental Protection Agency: Ada, OK, USA, 1985. [Google Scholar]
- Taghavi, N.; Niven, R.K.; Kramer, M.; Paull, D.J. Comparison of DRASTIC and DRASTICL groundwater vulnerability assessments of the Burdekin Basin, Queensland, Australia. Sci. Total Environ. 2023, 858, 159945. [Google Scholar] [CrossRef]
- Wu, X.; Marshall, L.; Sharma, A. The influence of data transformations in simulating Total Suspended Solids using Bayesian inference. Environ. Model. Softw. 2019, 121, 104493. [Google Scholar] [CrossRef]
- Fu, B.; Horsburgh, J.S.; Jakeman, A.J.; Gualtieri, C.; Arnold, T.; Marshall, L.; Green, T.R.; Quinn, N.W.T.; Volk, M.; Hunt, R.J.; et al. Modeling water quality in watersheds: From here to the next generation. Water Resour. Res. 2020, 56, e2020WR027721. [Google Scholar] [CrossRef] [PubMed]
- Marshall, L.; Nott, D.; Sharma, A. Towards dynamic catchment modelling: A Bayesian hierarchical mixtures of experts framework. Hydrol. Process. Int. J. 2007, 21, 847–861. [Google Scholar] [CrossRef]
- Zhao, Y.; Sharma, A.; Sivakumar, B.; Marshall, L.; Wang, P.; Jiang, J. A Bayesian method for multi-pollution source water quality model and seasonal water quality management in river segments. J. Environ. Model. Softw. 2014, 57, 216–226. [Google Scholar] [CrossRef]
- Tang, Y.; Marshall, L.; Sharma, A.; Ajami, H. A Bayesian alternative for multi-objective ecohydrological model specification. J. Hydrol. 2018, 556, 25–38. [Google Scholar] [CrossRef]
- Zeng, L.; Li, J. A Bayesian belief network approach for mapping water conservation ecosystem service optimization region. J. Geogr. Sci. 2019, 29, 1021–1038. [Google Scholar] [CrossRef]
- Oliveira, R.; Scalzo, R.; Kohn, R.; Cripps, S.; Hardman, K.; Close, J.; Taghavi, N.; Lemckert, C. Bayesian optimization with informative parametric models via sequential Monte Carlo. Data-Centric Eng. 2022, 3, e5. [Google Scholar] [CrossRef]
- Cahill, N.; Croke, J.; Campbell, M.; Hughes, K.; Vitkovsky, J.; Kilgallen, J.E.; Parnell, A. A Bayesian time series model for reconstructing hydroclimate from multiple proxies. Environmetrics 2023, 34, e2786. [Google Scholar] [CrossRef]
- Taghavi, N.; Niven, R.K.; Kramer, M.; Paull, D.J. Enhancing groundwater vulnerability assessment through Bayesian inference. J. Hydrol. 2025, 653, 132781. [Google Scholar] [CrossRef]
- Bayes, T. LII. An essay towards solving a problem in the doctrine of chances. By the late Rev. Mr. Bayes, F. R. S. communicated by Mr. Price, in a letter to John Canton, A. M. F. R. S. Philos. Trans. R. Soc. Lond. 1763, 53, 370–418. [Google Scholar] [CrossRef]
- Mahalanobis, P.C. Reprint of: Mahalanobis, P.C. (1936) "On the Generalised Distance in Statistics.". Sankhya A 2019, 80, 1–7. [Google Scholar] [CrossRef]
- MATLAB, version: 9.8.0.1323502 (R2020a); The MathWorks, Inc.: Natick, MA, USA, 2020.
- Dancey, C.; Reidy, J.; Rowe, R. Statistics for the Health Sciences: A Non-Mathematical Introduction; Sage Publications: Thousand Oaks, CA, USA, 2012. [Google Scholar]
- Akoglu, H. User’s guide to correlation coefficients. Turk. J. Emerg. Med. 2018, 18, 91–93. [Google Scholar] [CrossRef] [PubMed]
- Turney, S. Pearson Correlation Coefficient (r)|Guide & Examples. 2023. Available online: https://www.scribbr.com/statistics/pearson-correlation-coefficient/ (accessed on 27 June 2023).
- Bochner, S.; Chandrasekharan, K. Fourier Transforms; Princeton University Press: Princeton, NJ, USA, 1949. [Google Scholar]
- ESRI. ArcGIS Desktop: Release 10.6; Environmental Systems Research Institute: Redlands, CA, USA, 2018. [Google Scholar]


| No. | Parameter | ||||
|---|---|---|---|---|---|
| JMAP | VBA | JMAP | VBA | ||
| 1 | D | 2.33 × 10−2 | 2.24 × 10−2 | 1.206 × 10−10 | 4.632 × 10−11 |
| 2 | R | 3.47× 10−2 | 3.48 × 10−2 | 5.948 × 10−11 | 6.684 × 10−12 |
| 3 | A | −2.78 × 10−3 | −2.54 × 10−3 | 4.709 × 10−11 | 1.262 × 10−11 |
| 4 | S | −2.13 × 10−5 | −1.93 × 10−6 | 3.177 × 10−9 | 3.163 × 10−10 |
| 5 | T | 4.25 × 10−1 | 3.61 × 10−1 | 5.156 × 10−9 | 3.271 × 10−9 |
| 6 | I | −4.80 × 10−4 | −3.98 × 10−4 | 5.154 × 10−12 | 4.155 × 10−12 |
| 7 | C | 4.63 × 10−3 | 4.59 × 10−3 | 1.891 × 10−11 | 2.869 × 10−12 |
| 8 | L | 5.33 × 10−1 | 5.43 × 10−1 | 7.696 × 10−10 | 5.162 × 10−10 |
| No. | Method | R (Unfiltered Data) | R (Fourier Transform Filter) |
|---|---|---|---|
| 1 | JMAP | 0.4 | 0.6 |
| 2 | VBA | 0.4 | 0.6 |
| 3 | Index-based DRASTICL [13] | 0.2 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taghavi, N.; Niven, R.K.; Kramer, M.; Paull, D.J. Inverse Bayesian Methods for Groundwater Vulnerability Assessment. Phys. Sci. Forum 2025, 12, 14. https://doi.org/10.3390/psf2025012014
Taghavi N, Niven RK, Kramer M, Paull DJ. Inverse Bayesian Methods for Groundwater Vulnerability Assessment. Physical Sciences Forum. 2025; 12(1):14. https://doi.org/10.3390/psf2025012014
Chicago/Turabian StyleTaghavi, Nasrin, Robert K. Niven, Matthias Kramer, and David J. Paull. 2025. "Inverse Bayesian Methods for Groundwater Vulnerability Assessment" Physical Sciences Forum 12, no. 1: 14. https://doi.org/10.3390/psf2025012014
APA StyleTaghavi, N., Niven, R. K., Kramer, M., & Paull, D. J. (2025). Inverse Bayesian Methods for Groundwater Vulnerability Assessment. Physical Sciences Forum, 12(1), 14. https://doi.org/10.3390/psf2025012014
