Characterization of Dietary Fiber Extracts from Corn (Zea mays L.) and Cooked Common Bean (Phaseolus vulgaris L.) Flours and Evaluation of Their Inhibitory Potential against Enzymes Associated with Glucose and Lipids Metabolism In Vitro †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biological Material and Preparation of the Flours
2.2. Aqueous Extraction of Dietary Fiber (DF)
2.3. Extraction and Quantification of Total Phenolic Compounds and Individual Phenolics from DF Fractions
2.4. Inhibition Potential of DF Fractions against Enzymes Linked to Glucose and Lipids Metabolism
2.5. Statistical Analysis
3. Results and Discussion
3.1. Dietary Fiber Contents from Raw Materials and Blends
3.2. Total Phenolic Compounds of DF Fractions
3.3. Inhibitory Activity of DF Fractions against Glucose and Lipid Metabolism Enzymes In Vitro
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Torres, F.; Rojas, A. Obesidad y salud pública en México: Transformación del patrón hegemónico de oferta-demanda de alimentos. Probl. Desarro. Rev. Latinoam. Econ. 2018, 49, 145–169. [Google Scholar] [CrossRef]
- Panigrahy, S.K.; Bhatt, R.; Kumar, A. Targeting type II diabetes with plant terpenes: The new and promising antidiabetic therapeutics. Biologia 2021, 76, 241–254. [Google Scholar] [CrossRef]
- Campos-Vega, R.; Oomah, B.; Loarca-Piña, G.; Vergara-Castañeda, H. Common beans and their non-digestible fraction: Cancer inhibitory activity—An overview. Foods 2013, 2, 374–392. [Google Scholar] [CrossRef] [PubMed]
- Loarca-Piña, G.; Luna-Vital, D.; Mojica, L.; Ramírez-Jiménez, A.K.; Luzardo-Ocampo, I. Health benefits of beans. In Phaseolus Vulgaris: Cultivars, Production and Uses; Nova Science Publishers: Hauppauge, NY, USA, 2018; pp. 201–227. [Google Scholar]
- Domínguez-Uscanga, A.; Loarca-Piña, G.; Gonzalez de Mejia, E.; Dominguez-Uscanga, A.; Loarca-Piña, G.; Gonzalez de Mejia, E. Baked corn (Zea mays L.) and bean (Phaseolus vulgaris L.) snack consumption lowered serum lipids and differentiated liver gene expression in C57BL/6 mice fed a high-fat diet by inhibiting PPARγ and SREBF2. J. Nutr. Biochem. 2017, 50, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Luzardo-Ocampo, I.; Campos-Vega, R.; Cuellar-Nuñez, M.L.L.; Vázquez-Landaverde, P.A.A.; Mojica, L.; Acosta-Gallegos, J.A.A.; Loarca-Piña, G. Fermented non-digestible fraction from combined nixtamalized corn (Zea mays L.)/cooked common bean (Phaseolus vulgaris L.) chips modulate anti-inflammatory markers on RAW 264.7 macrophages. Food Chem. 2018, 259, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Luzardo-Ocampo, I.; Campos-Vega, R.; Gonzalez de Mejia, E.; Loarca-Piña, G. Consumption of a baked corn and bean snack reduced chronic colitis inflammation in CD-1 mice via downregulation of IL-1 receptor, TLR, and TNF-α associated pathways. Food Res. Int. 2020, 132, 109097. [Google Scholar] [CrossRef] [PubMed]
- Vergara-Castañeda, H.A.; Guevara-González, R.G.; Ramos-Gómez, M.; Reynoso-Camacho, R.; Guzmán-Maldonado, H.; Feregrino-Pérez, A.A.; Oomah, B.D.; Loarca-Piña, G. Non-digestible fraction of cooked bean (Phaseolus vulgaris L.) cultivar Bayo Madero suppresses colonic aberrant crypt foci in azoxymethane-induced rats. Food Funct. 2010, 1, 294–300. [Google Scholar] [CrossRef]
- Luzardo-Ocampo, I.; Campos-Vega, R.; Gaytán-Martínez, M.; Preciado-Ortiz, R.; Mendoza, S.; Loarca-Piña, G.; Preciado-Ortíz, R.; Mendoza, S.; Loarca-Piña, G. Bioaccessibility and antioxidant activity of free phenolic compounds and oligosaccharides from corn (Zea mays L.) and common bean (Phaseolus vulgaris L.) chips during in vitro gastrointestinal digestion and simulated colonic fermentation. Food Res. Int. 2017, 100, 304–311. [Google Scholar] [CrossRef]
- Treviño-Mejía, D.; Luna-Vital, D.A.; Gaytán-Martínez, M.; Mendoza, S.; Loarca-Piña, G. Fortification of commercial nixtamalized maize (Zea mays L.) with common bean (Phaseolus vulgaris L.) increased the nutritional and nutraceutical content of tortillas without modifying sensory properties. J. Food Qual. 2016, 39, 569–579. [Google Scholar] [CrossRef]
- Benitez, V.; Rebollo-Hernanz, M.; Hernanz, S.; Chantres, S.; Aguilera, Y.; Martin-Cabrejas, M.A. Coffee parchment as a new dietary fiber ingredient: Functional and physiological characterization. Food Res. Int. 2019, 122, 105–113. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Ramírez-Jiménez, A.K.; Reynoso-Camacho, R.; Mendoza-Díaz, S.; Loarca-Piña, G. Functional and technological potential of dehydrated Phaseolus vulgaris L. flours. Food Chem. 2014, 161, 254–260. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.H.; Lucius, A.; Meyer, T.; Gonzalez de Mejia, E. Cultivar evaluation and effect of fermentation on antioxidant capacity and in vitro inhibition of α-amylase and α-glucosidase by highbush blueberry (Vaccinium corymbosum). J. Agric. Food Chem. 2011, 59, 8923–8930. [Google Scholar] [CrossRef]
- Rodríguez-Salinas, P.A.; Zavala-García, F.; Urías-Orona, V.; Muy-Rangel, D.; Heredia, J.B.; Niño-Medina, G. Chromatic, nutritional and nutraceutical properties of pigmented native maize (Zea mays L.) genotypes from the northeast of Mexico. Arab. J. Sci. Eng. 2020, 45, 95–112. [Google Scholar] [CrossRef]
- Bader Ul Ain, H.; Saeed, F.; Ahmed, A.; Asif Khan, M.; Niaz, B.; Tufail, T. Improving the physicochemical properties of partially enhanced soluble dietary fiber through innovative techniques: A coherent review. J. Food Process. Preserv. 2019, 43, e13917. [Google Scholar] [CrossRef]
- Pérez-Jiménez, J.; Serrano, J.; Tabernero, M.; Arranz, S.; Díaz-Rubio, M.E.; García-Diz, L.; Goñi, I.; Saura-Calixto, F. Bioavailability of phenolic antioxidants associated with dietary fiber: Plasma antioxidant capacity after acute and long-term intake in humans. Plant Foods Hum. Nutr. 2009, 64, 102–107. [Google Scholar] [CrossRef]
- Ramírez-Jiménez, A.K.; Rangel-Hernández, J.; Morales-Sánchez, E.; Loarca-Piña, G.; Gaytán-Martínez, M. Changes on the phytochemicals profile of instant corn flours obtained by traditional nixtamalization and ohmic heating process. Food Chem. 2019, 276, 57–62. [Google Scholar] [CrossRef]
- Dueñas, M.; Sarmento, T.; Aguilera, Y.; Benitez, V.; Mollá, E.; Esteban, R.M.; Martín-Cabrejas, M.A. Impact of cooking and germination on phenolic composition and dietary fibre fractions in dark beans (Phaseolus vulgaris L.) and lentils (Lens culinaris L.). LWT—Food Sci. Technol. 2016, 66, 72–78. [Google Scholar] [CrossRef]
- Apostolidis, E.; Kwon, Y.-I.; Ghaedian, R.; Shetty, K. Fermentation of milk and soymilk by Lactobacillus bulgaricus and Lactobacillus acidophilus enhances functionality for potential dietary management of hyperglycemia and hypertension. Food Biotechnol. 2007, 21, 217–236. [Google Scholar] [CrossRef]
- Karimi, A.; Azizi, M.H.; Ahmadi Gavlighi, H. Frationation of hydrolysate from corn germ protein by ultrafiltration: In vitro antidiabetic and antioxidant activity. Food Sci. Nutr. 2020, 8, 2395–2405. [Google Scholar] [CrossRef] [Green Version]
- Houghton, D.; Wilcox, M.D.; Chater, P.I.; Brownlee, I.A.; Seal, C.J.; Pearson, J.P. Biological activity of alginate and its effect on pancreatic lipase inhibition as a potential treatment for obesity. Food Hydrocoll. 2015, 49, 18–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample | α-Amylase Inhibition (%) | α-Glucosidase Inhibition (%) | Lipase Inhibition (%) |
---|---|---|---|
IDF | |||
A | 22.0 ± 5.1 a | 48.7 ± 8.0 cde | 41.6 ± 1.5 e |
B | 18.7 ± 1.0 a | 54.0 ± 9.1 bcde | 42.4 ± 3.3 e |
C | 20.9 ± 1.2 a | 74.1 ± 3.6 ab | 43.2 ± 3.0 de |
7030AC | 18.3 ± 1.4 a | 57.1 ± 3.6 bcd | 42.6 ± 4.5 |
7030BC | 17.5 ± 3.1 a | 48.0 ± 3.5 cde | 55.8 ± 3.0 abcd |
8020AC | 18.9 ± 2.3 a | 61.3 ± 7.3 abcd | 57.9 ± 7.4 ab |
8020BC | 15.0 ± 2.3 a | 41.9 ± 1.5 def | 43.7 ± 0.7 cde |
SDF | |||
A | 21.4 ± 1.9 a | 80.2 ± 0.9 a | 46.8 ± 2.2 bcde |
B | 16.1 ± 2.6 a | 21.5 ± 2.4 f | 41.8 ± 1.1 e |
C | 21.7 ± 0.7 a | 50.1 ± 1.8 cde | 46.6 ± 0.4 bcde |
7030AC | 20.7 ± 0.1 a | 69.3 ± 5.7 abc | 56.3 ± 0.7 abc |
7030BC | 19.6 ± 0.8 a | 44.9 ± 3.3 de | 60.8 ± 0.4 a |
8020AC | 14.6 ± 1.6 a | 35.2 ± 4.8 ef | 56.6 ± 4.1 ab |
8020BC | 16.4 ± 0.6 a | 50.2 ± 9.4 cde | 59.7 ± 3.3 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serna-Perez, A.B.; Loarca-Piña, G.; Luzardo-Ocampo, I. Characterization of Dietary Fiber Extracts from Corn (Zea mays L.) and Cooked Common Bean (Phaseolus vulgaris L.) Flours and Evaluation of Their Inhibitory Potential against Enzymes Associated with Glucose and Lipids Metabolism In Vitro. Biol. Life Sci. Forum 2021, 6, 86. https://doi.org/10.3390/Foods2021-11049
Serna-Perez AB, Loarca-Piña G, Luzardo-Ocampo I. Characterization of Dietary Fiber Extracts from Corn (Zea mays L.) and Cooked Common Bean (Phaseolus vulgaris L.) Flours and Evaluation of Their Inhibitory Potential against Enzymes Associated with Glucose and Lipids Metabolism In Vitro. Biology and Life Sciences Forum. 2021; 6(1):86. https://doi.org/10.3390/Foods2021-11049
Chicago/Turabian StyleSerna-Perez, Amanda B., Guadalupe Loarca-Piña, and Ivan Luzardo-Ocampo. 2021. "Characterization of Dietary Fiber Extracts from Corn (Zea mays L.) and Cooked Common Bean (Phaseolus vulgaris L.) Flours and Evaluation of Their Inhibitory Potential against Enzymes Associated with Glucose and Lipids Metabolism In Vitro" Biology and Life Sciences Forum 6, no. 1: 86. https://doi.org/10.3390/Foods2021-11049
APA StyleSerna-Perez, A. B., Loarca-Piña, G., & Luzardo-Ocampo, I. (2021). Characterization of Dietary Fiber Extracts from Corn (Zea mays L.) and Cooked Common Bean (Phaseolus vulgaris L.) Flours and Evaluation of Their Inhibitory Potential against Enzymes Associated with Glucose and Lipids Metabolism In Vitro. Biology and Life Sciences Forum, 6(1), 86. https://doi.org/10.3390/Foods2021-11049