Castanea sativa Shells: Is Cosmetic Industry a Prominent Opportunity to Valorize This Agro-Waste? †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Castanea sativa Shells
2.2. Preparation of Extract by Supercritical Fluids Extraction with CO2 (SFE-CO2)
2.3. Antioxidant and Antiradical Properties
2.4. Elastase and Hyaluronidase Inhibition Assays
2.5. Skin Cells Viability by In Vitro Assays
2.6. Skin Permeation of Phenolic Compounds by Ex Vivo Assay
2.7. Statistical Analysis
3. Results and Discussion
3.1. In Vitro Antioxidant and Antiradical Activities of CS Extract
3.2. Hyaluronidase and Elastase Inhibitory Activity
3.3. Effects towards Skin Cell Lines
3.4. Ex Vivo Permeation of Phenolic Compounds on Human Skin
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pinto, D.; de la Luz Cádiz-Gurrea, M.; Vallverdú-Queralt, A.; Delerue-Matos, C.; Rodrigues, F. Castanea sativa shells: A review on phytochemical composition, bioactivity and waste management approaches for industrial valorization. Food Res. Int. 2021, 144, 110364. [Google Scholar] [CrossRef] [PubMed]
- De Vasconcelos, M.D.C.B.M.; Bennett, R.N.; Quideau, S.; Jacquet, R.; Rosa, E.A.S.; Ferreira-Cardoso, J.V. Evaluating the potential of chestnut (Castanea sativa Mill) fruit pericarp and integument as a source of tocopherols, pigments and polyphenols. Ind. Crops Prod. 2010, 31, 301–311. [Google Scholar] [CrossRef]
- Rodrigues, F.; Santos, J.; Pimentel, F.B.; Braga, N.; Palmeira-de-Oliveira, A.; Oliveira, M.B.P.P. Promising new applications of Castanea sativa shell: Nutritional composition, antioxidant activity, amino acids and vitamin E profile. Food Funct. 2015, 6, 2854–2860. [Google Scholar] [CrossRef] [PubMed]
- Pinto, D.; de la Luz Cádiz-Gurrea, M.; Sut, S.; Ferreira, A.S.; Leyva-Jimenez, F.J.; Dall’Acqua, S.; Segura-Carretero, A.; Delerue-Matos, C.; Rodrigues, F. Valorisation of underexploited Castanea sativa shells bioactive compounds recovered by supercritical fluid extraction with CO2: A response surface methodology approach. J. CO2 Util. 2020, 40, 101194. [Google Scholar] [CrossRef]
- Squillaci, G.; Apone, F.; Sena, L.M.; Carola, A.; Tito, A.; Bimonte, M.; Lucia, A.; Colucci, G.; Cara, F.; Morana, A. Chestnut (Castanea sativa Mill.) industrial wastes as a valued bioresource for the production of active ingredients. Process Biochem. 2018, 64, 228–236. [Google Scholar] [CrossRef]
- Pinto, D.; Vieira, E.F.; Peixoto, A.F.; Freire, C.; Freitas, V.; Costa, P.; Delerue-Matos, C.; Rodrigues, F. Optimizing the extraction of phenolic antioxidants from chestnut shells by subcritical water extraction using response surface methodology. Food Chem. 2021, 334, 127521. [Google Scholar] [CrossRef]
- Lameirão, F.; Pinto, D.; Vieira, E.F.; Peixoto, A.F.; Freire, C.; Sut, S.; Dall’Acqua, S.; Costa, P.; Delerue-Matos, C.; Rodrigues, F. Green-sustainable recovery of phenolic and antioxidant compounds from industrial chestnut shells using ultrasound-assisted extraction: Optimization and evaluation of biological activities in vitro. Antioxidants 2020, 9, 267. [Google Scholar] [CrossRef] [Green Version]
- Pinto, D.; Silva, A.M.; Freitas, V.; Vallverdú-Queralt, A.; Delerue-Matos, C.; Rodrigues, F. Microwave-assisted extraction as a green technology approach to recovery polyphenols from Castanea sativa shells. ACS Food Sci. Technol. 2021, 1, 229–241. [Google Scholar] [CrossRef]
- Nema, N.K.; Maity, N.; Sarkar, B.K.; Mukherjee, P.K. Matrix metalloproteinase, hyaluronidase and elastase inhibitory potential of standardized extract of Centella asiatica. Pharm. Biol. 2013, 51, 1182–1187. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, F.; Alves, A.C.; Nunes, C.; Sarmento, B.; Amaral, M.H.; Reis, S.; Oliveira, M.B.P.P. Permeation of topically applied caffeine from a food by-product in cosmetic formulations: Is nanoscale in vitro approach an option? Int. J. Pharm. 2016, 513, 496–503. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, A.; Fernandes, I.; Cruz, L.; Mateus, N.; Cabral, M.; de Freitas, V. Antioxidant and biological properties of bioactive phenolic compounds from Quercus suber L. J. Agric. Food Chem. 2009, 57, 11154–11160. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Xie, Y.; Liu, C.; Chen, S.; Hu, S.; Xie, Z.; Deng, X.; Xu, J. Comprehensive comparative analysis of volatile compounds in citrus fruits of different species. Food Chem. 2017, 230, 316–326. [Google Scholar] [CrossRef] [PubMed]
- Almeida, I.F.; Fernandes, E.; Lima, J.L.; Costa, P.C.; Bahia, M.F. Protective effect of Castanea sativa and Quercus robur leaf extracts against oxygen and nitrogen reactive species. J. Photochem. Photobiol. B 2008, 91, 87–95. [Google Scholar] [CrossRef] [PubMed]
- de la Luz Cádiz-Gurrea, M.; Pinto, D.; Delerue-Matos, C.; Rodrigues, F. Olive fruit and leaf wastes as bioactive ingredients for cosmetics—A preliminary study. Antioxidants 2021, 10, 245. [Google Scholar] [CrossRef] [PubMed]
- Pinto, D.; de la Luz Cádiz-Gurrea, M.; Garcia, J.; Saavedra, M.J.; Freitas, V.; Costa, P.; Sarmento, B.; Delerue-Matos, C.; Rodrigues, F. From soil to cosmetic industry: Validation of a new cosmetic ingredient extracted from chestnut shells. Sustain. Mater. Technol. 2021, 29, e00309. [Google Scholar] [CrossRef]
- Shimogaki, H.; Tanaka, Y.; Tamai, H.; Masuda, M. In vitro and in vivo evaluation of ellagic acid on melanogenesis inhibition. Int. J. Cosmet. Sci. 2000, 22, 291–303. [Google Scholar] [CrossRef] [PubMed]
- Heard, C.M.; Johnson, S.; Moss, G.; Thomas, C.P. In vitro transdermal delivery of caffeine, theobromine, theophylline and catechin from extract of Guarana, Paullinia cupana. Int. J. Pharm. 2006, 317, 26–31. [Google Scholar] [CrossRef] [PubMed]
FRAP (IC50, µg/mL) | DPPH (% Inhibition) | ABTS (mg AAE/g dw) 1 | O2●− (IC50, µg/mL) | HOCl (IC50, µg/mL) | NO● (IC50, µg/mL) | |
---|---|---|---|---|---|---|
CS extract | 204.79 ± 4.33 | 53.04 ± 6.75 | 124.84 ± 4.53 | 49.42 ± 0.41 2,a | 1.57 ± 0.10 a | 0.76 ± 0.11 b |
Catechin | – | – | – | 48.99 ± 0.75 b | 0.18 ± 0.01 c | 0.95 ± 0.04 a |
Gallic acid | – | – | – | 5.18 ± 0.19 c | 1.25 ± 0.05 b | 0.20 ± 0.03 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinto, D.; de la Luz Cádiz-Gurrea, M.; de Freitas, V.; Costa, P.C.; Sarmento, B.; Delerue-Matos, C.; Rodrigues, F. Castanea sativa Shells: Is Cosmetic Industry a Prominent Opportunity to Valorize This Agro-Waste? Biol. Life Sci. Forum 2021, 6, 24. https://doi.org/10.3390/Foods2021-11048
Pinto D, de la Luz Cádiz-Gurrea M, de Freitas V, Costa PC, Sarmento B, Delerue-Matos C, Rodrigues F. Castanea sativa Shells: Is Cosmetic Industry a Prominent Opportunity to Valorize This Agro-Waste? Biology and Life Sciences Forum. 2021; 6(1):24. https://doi.org/10.3390/Foods2021-11048
Chicago/Turabian StylePinto, Diana, María de la Luz Cádiz-Gurrea, Victor de Freitas, Paulo C. Costa, Bruno Sarmento, Cristina Delerue-Matos, and Francisca Rodrigues. 2021. "Castanea sativa Shells: Is Cosmetic Industry a Prominent Opportunity to Valorize This Agro-Waste?" Biology and Life Sciences Forum 6, no. 1: 24. https://doi.org/10.3390/Foods2021-11048
APA StylePinto, D., de la Luz Cádiz-Gurrea, M., de Freitas, V., Costa, P. C., Sarmento, B., Delerue-Matos, C., & Rodrigues, F. (2021). Castanea sativa Shells: Is Cosmetic Industry a Prominent Opportunity to Valorize This Agro-Waste? Biology and Life Sciences Forum, 6(1), 24. https://doi.org/10.3390/Foods2021-11048