The Environmental Impact of ‘Superfoods’: A Space for Debate and Joint Reflection †
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
3.1. Literature Revision and LCA Methodology Applied to Superfoods
3.2. Short, Medium, and Long-Term Challenges of Superfoods
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- AESAN Information Note on Superfoods. Available online: https://www.aesan.gob.es/SIAC-WEB/pregunta.do;jsessionid=D9Tx-8HIo6JEKEW3CbDo3aiweu6YNmS8GlLXaDV6DOgwSddNia7l!1306075272?reqCode=retrieve&bean.id=3465 (accessed on 17 August 2021).
- Superfoods Market—Growth, Trends, COVID-19 Impact, and Forecasts (2021–2026); Mordor Intelligence: Telangana, India, 2021.
- Massawe, F.; Mayes, S.; Cheng, A. Crop Diversity: An Unexploited Treasure Trove for Food Security. Trends Plant Sci. 2016, 21, 365–368. [Google Scholar] [CrossRef] [PubMed]
- Tubiello, F.N.; Rosenzweig, C.; Conchedda, G.; Karl, K.; Gütschow, J.; Xueyao, P.; Obli-Laryea, G.; Wanner, N.; Qiu, S.Y.; De Barros, J.; et al. Greenhouse gas emissions from food systems: Building the evidence base. Environ. Res. Lett. 2021, 16, 065007. [Google Scholar] [CrossRef]
- Krishnan, R.; Agarwal, R.; Bajada, C.; Arshinder, K. Redesigning a food supply chain for environmental sustainability—An analysis of resource use and recovery. J. Clean. Prod. 2020, 242, 118374. [Google Scholar] [CrossRef]
- Sala, S.; Anton, A.; McLaren, S.J.; Notarnicola, B.; Saouter, E.; Sonesson, U. In quest of reducing the environmental impacts of food production and consumption. J. Clean. Prod. 2017, 140, 387–398. [Google Scholar] [CrossRef]
- Fernández-Ríos, A.; Laso, J.; Hoehn, D.; Amo-Setién, F.J.; Abajas-Bustillo, R.; Ortego, C.; Fullana-i-Palmer, P.; Bala, A.; Batlle-Bayer, L.; Balcells, M.; et al. A critical review of superfoods from a holistic nutritional and environmental approach. J. Clean. Prod. 2022, 379, 134491. [Google Scholar] [CrossRef]
- ELSEVIER Scopus. Available online: www.scopus.com (accessed on 10 September 2021).
- Falagas, M.E.; Pitsouni, E.I.; Malietzis, G.A.; Pappas, G. Comparison of PubMed, Scopus, Web of Science, and Google Scholar: Strengths and weaknesses. FASEB J. 2008, 22, 338–342. [Google Scholar] [CrossRef]
- Google Google Scholar. Available online: www.scholar.google.es (accessed on 10 September 2021).
- Gamboa, C.; Bojacá, C.R.; Schrevens, E.; Maertens, M. Sustainability of smallholder quinoa production in the Peruvian Andes. J. Clean. Prod. 2020, 264, 121657. [Google Scholar] [CrossRef]
- Lotfalian Dehkordi, A.; Forootan, M. Estimation of energy flow and environmental impacts of quinoa cultivation through life cycle assessment methodology. Environ. Sci. Pollut. Res. 2020, 27, 21836–21846. [Google Scholar] [CrossRef] [Green Version]
- Deprá, M.C.; Severo, I.A.; dos Santos, A.M.; Zepka, L.Q.; Jacob-Lopes, E. Environmental impacts on commercial microalgae-based products: Sustainability metrics and indicators. Algal Res. 2020, 51, 102056. [Google Scholar] [CrossRef]
- Smetana, S.; Sandmann, M.; Rohn, S.; Pleissner, D.; Heinz, V. Autotrophic and heterotrophic microalgae and cyanobacteria cultivation for food and feed: Life cycle assessment. Bioresour. Technol. 2017, 245, 162–170. [Google Scholar] [CrossRef]
- Ye, C.; Mu, D.; Horowitz, N.; Xue, Z.; Chen, J.; Xue, M.; Zhou, Y.; Klutts, M.; Zhou, W. Life cycle assessment of industrial scale production of spirulina tablets. Algal Res. 2018, 34, 154–163. [Google Scholar] [CrossRef]
- Cancino-Espinoza, E.; Vázquez-Rowe, I.; Quispe, I. Organic quinoa (Chenopodium quinoa L.) production in Peru: Environmental hotspots and food security considerations using Life Cycle Assessment. Sci. Total Environ. 2018, 637–638, 221–232. [Google Scholar] [CrossRef] [PubMed]
- Thomas, C.; Grémy-Gros, C.; Perrin, A.; Symoneaux, R.; Maître, I. Implementing LCA early in food innovation processes: Study on spirulina-based food products. J. Clean. Prod. 2020, 268, 121793. [Google Scholar] [CrossRef]
- Sauter, P.; Witt, J.; Billig, E.; Thrän, D. Impact of the Renewable Energy Sources Act in Germany on electricity produced with solid biofuels—Lessons learned by monitoring the market development. Biomass Bioenergy 2013, 53, 162–171. [Google Scholar] [CrossRef]
- He, X.; Qiao, Y.; Liang, L.; Knudsen, M.T.; Martin, F. Environmental life cycle assessment of long-term organic rice production in subtropical China. J. Clean. Prod. 2018, 176, 880–888. [Google Scholar] [CrossRef]
- Clune, S.; Crossin, E.; Verghese, K. Systematic review of greenhouse gas emissions for different fresh food categories. J. Clean. Prod. 2017, 140, 766–783. [Google Scholar] [CrossRef] [Green Version]
- Arumugam, T.; Sona, C.L.; Maheswari, M.U. Fruits and vegetables as Superfoods: Scope and demand. Pharma Inov. J. 2021, 10, 119–129. [Google Scholar]
- Loyer, J. The Social Lives of Superfoods. Ph.D. Thesis, University of Adelaide, Adelaide, Australia, 2016. [Google Scholar]
- Galford, G.L.; Peña, O.; Sullivan, A.K.; Nash, J.; Gurwick, N.; Pirolli, G.; Richards, M.; White, J.; Wollenberg, E. Agricultural development addresses food loss and waste while reducing greenhouse gas emissions. Sci. Total Environ. 2020, 699, 134318. [Google Scholar] [CrossRef]
- Magrach, A.; Sanz, M.J. Environmental and social consequences of the increase in the demand for ‘superfoods’ world-wide. People Nat. 2020, 2, 267–278. [Google Scholar] [CrossRef]
- Ickowitz, A.; Powell, B.; Rowland, D.; Jones, A.; Sunderland, T. Agricultural intensification, dietary diversity, and markets in the global food security narrative. Glob. Food Sec. 2019, 20, 9–16. [Google Scholar] [CrossRef]
- Nelson, R. Viewpoint: International agriculture’s needed shift from energy intensification to agroecological intensification. Food Policy 2020, 91, 2019–2021. [Google Scholar] [CrossRef]
- Hufnagel, J.; Reckling, M.; Ewert, F. Diverse approaches to crop diversification in agricultural research. A review. Agron. Sustain. Dev. 2020, 40, 1–17. [Google Scholar] [CrossRef]
- Piorr, H.P. Environmental policy, agri-environmental indicators and landscape indicators. Agric. Ecosyst. Environ. 2003, 98, 17–33. [Google Scholar] [CrossRef]
- Notarnicola, B.; Sala, S.; Anton, A.; McLaren, S.J.; Saouter, E.; Sonesson, U. The role of life cycle assessment in supporting sustainable agri-food systems: A review of the challenges. J. Clean. Prod. 2017, 140, 399–409. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-Ríos, A.; Laso, J.; Margallo, M.; Aldaco, R. The Environmental Impact of ‘Superfoods’: A Space for Debate and Joint Reflection. Biol. Life Sci. Forum 2021, 6, 123. https://doi.org/10.3390/Foods2021-11022
Fernández-Ríos A, Laso J, Margallo M, Aldaco R. The Environmental Impact of ‘Superfoods’: A Space for Debate and Joint Reflection. Biology and Life Sciences Forum. 2021; 6(1):123. https://doi.org/10.3390/Foods2021-11022
Chicago/Turabian StyleFernández-Ríos, Ana, Jara Laso, María Margallo, and Rubén Aldaco. 2021. "The Environmental Impact of ‘Superfoods’: A Space for Debate and Joint Reflection" Biology and Life Sciences Forum 6, no. 1: 123. https://doi.org/10.3390/Foods2021-11022
APA StyleFernández-Ríos, A., Laso, J., Margallo, M., & Aldaco, R. (2021). The Environmental Impact of ‘Superfoods’: A Space for Debate and Joint Reflection. Biology and Life Sciences Forum, 6(1), 123. https://doi.org/10.3390/Foods2021-11022