Coffee Flower as a Promising Novel Food—Chemical Characterization and Sensory Evaluation †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. High-Performance Liquid Chromatography (HPLC)
2.3. Nuclear Magnetic Resonance (NMR) Spectroscopy
2.3.1. Extraction of Water-Soluble Compounds for 1H-NMR
2.3.2. Extraction of Fat-Soluble Compounds for 1H-NMR
2.4. Near Infrared (NIR) Spectroscopy
2.5. Sensory Analysis
3. Results
3.1. HPLC/NMR Analysis
3.2. NIR Analysis
3.3. Sensory Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bi, X.; Huang, J.; Hu, F.; Yang, Y.; Li, Y.; Lyu, Y.; Li, G.; Huang, W.; Zhang, X.; He, H.; et al. Preparation method of coffee flower tea. Patent CN110959719A, 16 December 2019. [Google Scholar]
- Lachenmeier, D.W.; Rajcic de Rezende, T.; Schwarz, S. An update on sustainable valorization of coffee by-products as novel foods within the European Union. Biol. Life Sci. Forum 2021, 6, 37. [Google Scholar] [CrossRef]
- Lachenmeier, D.; Schwarz, S.; Rieke-Zapp, J.; Cantergiani, E.; Rawel, H.; Martín-Cabrejas, M.A.; Martuscelli, M.; Gottstein, V.; Angeloni, S. Coffee by-products as sustainable novel foods: Report of the 2nd international electronic conference on foods—Future foods and food technologies for a sustainable world. Foods 2022, 11, 3. [Google Scholar] [CrossRef]
- Arrillaga, N.G. A new perfume oil from coffee flowers. Rev. Agric. Puerto Rico 1942, 34, 82–84. [Google Scholar]
- Berry-Caillet, V.; Husson, J.; Barro, L. Floral Water from Coffee Flowers. Patent WO2022053 605A1, 10 September 2021. [Google Scholar]
- Charrier, A.; Berthaud, J. Botanical classification of coffee. In Coffee: Botany, Biochemistry and Production of Beans and Beverage; Clifford, M.N., Willson, K.C., Eds.; Springer: Boston, MA, USA, 1985. [Google Scholar] [CrossRef]
- Chuttong, B.; Buawangpong, N.; Burgett, M. Honey bees and coffee. Bee World 2015, 92, 80–83. [Google Scholar] [CrossRef]
- Schiassi, M.; de Souza, V.; Lago, A.; Carvalho, G.; Curi, P.; Guimarães, A.; Queiroz, F. Quality of honeys from different botanical origins. J. Food Sci. Technol. 2020, 58, 4167–4177. [Google Scholar] [CrossRef]
- Nguyen, T.M.T.; Cho, E.J.; Song, Y.; Oh, C.H.; Funada, R.; Bae, H.-J. Use of coffee flower as a novel resource for the production of bioactive compounds, melanoidins, and bio-sugars. Food Chem. 2019, 299, 125120. [Google Scholar] [CrossRef]
- De Abreu Pinheiro, F.; Ferreira Elias, L.; De Jesus Filho, M.; Uliana Modolo, M.; Gomes Rocha, J.D.C.; Fumiere Lemos, M.; Scherer, R.; Soares Cardoso, W. Arabica and conilon coffee flowers: Bioactive compounds and antioxidant capacity under different processes. Food Chem. 2021, 336, 127701. [Google Scholar] [CrossRef]
- DIN ISO 14502-2:2007-12; Determination of Substances Characteristic of Green and Black Tea–Part 2: Content of Catechins in Green Tea–Method Using High-Performance Liquid Chromatography (ISO 14502-2:2005 + Corrigendum 1:2006). Beuth Verlag: Berlin, Germany, 2007. [CrossRef]
- DIN 10809:1988-08; Analysis of Tea; Preparation of Liquor for Use in Sensory Tests. Beuth Verlag: Berlin, Germany, 1988. [CrossRef]
Parameters | Average (mg/100 g) | Minimum (mg/100 g) | Maximum (mg/100 g) | |
---|---|---|---|---|
HPLC | Caffeine | 860 | 417 | 1171 |
Chlorogenic acid | 1334 | 129 | 2638 | |
3,4-Dicaffeoylquinic acid | 104 | 11 | 252 | |
3,5-Dicaffeoylquinic acid | 2684 | 186 | 5837 | |
NMR (water-soluble compounds) | Caffeine | 841 | 313 | 1267 |
Chlorogenic acid | 885 | 55 | 1896 | |
Trigonelline | 1377 | 755 | 1965 | |
Malic acid | 1475 | 187 | 2167 | |
Formic acid | 109 | 9 | 196 | |
Succinic acid | 69 | 22 | 150 | |
Quinic acid | 1789 | 319 | 2250 | |
Acetic acid | 72 | 20 | 102 | |
Fumaric acid | 8 | 2 | 36 | |
Lactic acid | 225 | 69 | 317 | |
Arabinose | 346 | 56 | 481 | |
Mannose | 203 | 84 | 325 | |
Glucose | 3091 | 103 | 6976 |
Parameters | Average (g/100 g) | Minimum (g/100 g) | Maximum (g/100 g) | |
---|---|---|---|---|
NIR | Water | 10.0 | 7.8 | 11.9 |
Ash | 7.5 | 6.7 | 9.4 | |
Protein | 9.1 | 3.9 | 15.5 | |
Essential oils | 0.2 | n.d. | 0.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wirz, K.; Schwarz, S.; Richling, E.; Walch, S.G.; Lachenmeier, D.W. Coffee Flower as a Promising Novel Food—Chemical Characterization and Sensory Evaluation. Biol. Life Sci. Forum 2022, 18, 53. https://doi.org/10.3390/Foods2022-12967
Wirz K, Schwarz S, Richling E, Walch SG, Lachenmeier DW. Coffee Flower as a Promising Novel Food—Chemical Characterization and Sensory Evaluation. Biology and Life Sciences Forum. 2022; 18(1):53. https://doi.org/10.3390/Foods2022-12967
Chicago/Turabian StyleWirz, Kathrin, Steffen Schwarz, Elke Richling, Stephan G. Walch, and Dirk W. Lachenmeier. 2022. "Coffee Flower as a Promising Novel Food—Chemical Characterization and Sensory Evaluation" Biology and Life Sciences Forum 18, no. 1: 53. https://doi.org/10.3390/Foods2022-12967
APA StyleWirz, K., Schwarz, S., Richling, E., Walch, S. G., & Lachenmeier, D. W. (2022). Coffee Flower as a Promising Novel Food—Chemical Characterization and Sensory Evaluation. Biology and Life Sciences Forum, 18(1), 53. https://doi.org/10.3390/Foods2022-12967