Effects of Deficit Irrigation on Growth, Yield, and Quality of Tomato Under Semi-Arid Regions †
Abstract
1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| WUE | Water use efficiency |
| SPAD | Soil–Plant Analysis Development |
| ETc | Crop evapotranspiration |
| ETo | Reference evapotranspiration |
| LSD | Least significant difference |
| RCBD | Randomized complete block design |
| Kc | Crop coefficient |
References
- FAO. Food and Agriculture Organization Statistical Database; Food and Agriculture Organization of the United Nations: Rome, Italy, 2025; Available online: https://www.fao.org/faostat/en/ (accessed on 15 January 2025).
- Qureshi, A.S.; McCornick, P.G.; Sarwar, A.; Sharma, B.R. Challenges and prospects of sustainable groundwater management in the Indus Basin, Pakistan. Water Resour. Manag. 2010, 24, 1551–1569. [Google Scholar] [CrossRef]
- Waqas, M.S.; Bayabil, H.K.; Hailegnaw, N.S.; Hussain, S.; Tariq, A.; Abubakar, S. Drought mitigation and livelihood improvement options through rainwater harvesting structures in a rainfed agricultural system. Agric. Syst. 2025, 230, 104469. [Google Scholar] [CrossRef]
- Hussain, S.; Arshad, M.; Cheema, M.J.M.; Qamar, M.U.; Wajid, S.A.; Daccache, A. Advancing Soil Moisture Prediction Using Satellite and UAV-based Imagery Using Moisture Indices with Machine Learning Models. Earth Syst. Environ. 2025, 1–22. [Google Scholar] [CrossRef]
- Naqvi, S.M.Z.A.; Hussain, S.; Awais, M.; Tahir, M.N.; Saleem, S.R.; Al-Yarimi, F.A.; Ashurov, M.; Saidani, O.; Khan, M.I.; Wu, J.; et al. Climate-resilient water management: Leveraging IoT and AI for sustainable agriculture. Egypt. Inform. J. 2025, 30, 100691. [Google Scholar] [CrossRef]
- Laghari, A.N.; Vanham, D.; Rauch, W. The Indus basin in the framework of current and future water resources management. Hydrol. Earth Syst. Sci. 2012, 16, 1063–1083. [Google Scholar] [CrossRef]
- Fereres, E.; Soriano, M.A. Deficit irrigation for reducing agricultural water use. J. Exp. Bot. 2007, 58, 147–159. [Google Scholar] [CrossRef] [PubMed]
- Geerts, S.; Raes, D. Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas. Agric. Water Manag. 2009, 96, 1275–1284. [Google Scholar] [CrossRef]
- Patanè, C.; Tringali, S.; Sortino, O. Effects of deficit irrigation on biomass, yield, water productivity and fruit quality of processing tomato under semi-arid Mediterranean climate conditions. Sci. Hortic. 2011, 129, 590–596. [Google Scholar] [CrossRef]
- Kirda, C.; Cetin, M.; Dasgan, Y.; Topcu, S.; Kaman, H.; Ekici, B.; Derici, M.R.; Ozguven, A.I. Yield response of greenhouse grown tomato to partial root drying and conventional deficit irrigation. Agric. Water Manag. 2004, 69, 191–201. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; Volume 300(9), p. D05109. [Google Scholar]
- Doorenbos, J.; Kassam, A.H. Yield response to water. FAO Irrig. Drain. Pap. 1979, 33, 1–193. [Google Scholar]
- Favati, F.; Lovelli, S.; Galgano, F.; Miccolis, V.; Di Tommaso, T.; Candido, V. Processing tomato quality as affected by irrigation scheduling. Sci. Hortic. 2009, 122, 562–571. [Google Scholar] [CrossRef]
- Topcu, S.; Kirda, C.; Dasgan, Y.; Kaman, H.; Cetin, M.; Yazici, A.; Bacon, M.A. Yield response and N-fertiliser recovery of tomato grown under deficit irrigation. Eur. J. Agron. 2007, 26, 64–70. [Google Scholar] [CrossRef]
- Marouelli, W.A.; Silva, W.L.C.; Moretti, C.L. Development of a tomato crop under different irrigation depths. Hortic. Bras. 2004, 22, 35–40. [Google Scholar] [CrossRef]
- Zhai, Y.; Yang, Q.; Hou, M. The effects of saline water drip irrigation on tomato yield, quality, and blossom-end rot incidence. PLoS ONE 2015, 10, e0142204. [Google Scholar] [CrossRef] [PubMed]
- Sensoy, S.; Ertek, A.; Gedik, I.; Kucukyumuk, C. Irrigation frequency and amount affect yield and quality of field-grown melon (Cucumis melo L.). Agric. Water Manag. 2007, 88, 269–274. [Google Scholar] [CrossRef]
- Hartz, T.K.; Miyao, G.; Mullen, R.J.; Cahn, M.D.; Valencia, J.; Brittan, K.L. Potassium requirements for maximum yield and fruit quality of processing tomato. J. Am. Soc. Hortic. Science. 1999, 124, 199–204. [Google Scholar] [CrossRef]
- Beckles, D.M. Factors affecting the postharvest soluble solids and sugar content of tomato (Solanum lycopersicum L.) fruit. Postharvest Biol. Technol. 2012, 63, 129–140. [Google Scholar] [CrossRef]
- Sato, S.; Peet, M.M.; Gardner, R.G. Formation of parthenocarpic fruit, undeveloped seeds, and germination of tomato under moderately elevated temperatures. Sci. Hortic. 2004, 102, 167–175. [Google Scholar] [CrossRef]
| Treatment (% ETc) | Tomato | ||
|---|---|---|---|
| Plant Height (cm) | SPAD Value | Leaf Area (cm2) | |
| 100 (Control) | 92.5 ± 2.1 a | 45.8 ± 1.3 a | 1450 ± 35 a |
| 80 | 90.2 ± 2.5 a | 44.7 ± 1.5 a | 1420 ± 40 a |
| 60 | 85.1 ± 1.8 b | 42.3 ± 1.2 b | 1305 ± 30 b |
| 40 | 78.3 ± 2.0 c | 39.0 ± 1.0 c | 1180 ± 25 c |
| Treatment | Tomato | ||
|---|---|---|---|
| Fruits/plant | Fruit Length (cm) | Fruit Diameter (cm) | |
| 100 | 38.6 ± 1.2 a | 6.4 ± 0.15 a | 5.8 ± 0.10 a |
| 80 | 37.8 ± 1.4 a | 6.2 ± 0.10 a | 5.7 ± 0.08 a |
| 60 | 33.2 ± 1.0 b | 5.8 ± 0.12 b | 5.3 ± 0.09 b |
| 40 | 28.5 ± 0.9 c | 5.3 ± 0.20 c | 4.8 ± 0.11 c |
| Treatment | Tomato | ||
|---|---|---|---|
| Yield (t ha−1) | Avg. Fruit Weight (g) | WUE (kg m−3) | |
| 100 | 105.5 ± 2.5 a | 90.8 ± 1.8 a | 1.25 ± 0.03 b |
| 80 | 108.3 ± 2.1 a | 89.2 ± 1.5 a | 1.39 ± 0.04 a |
| 60 | 92.7 ± 1.9 b | 82.5 ± 1.7 b | 1.32 ± 0.05 a |
| 40 | 76.4 ± 2.3 c | 75.0 ± 2.0 c | 1.22 ± 0.06 b |
| Treatment | Tomato | |||
|---|---|---|---|---|
| TSS (°Brix) | pH | Acidity (%) | Firmness (kg/cm2) | |
| 100 | 4.2 ± 0.1 b | 4.35 ± 0.05 b | 0.35 ± 0.02 b | 1.15 ± 0.05 b |
| 80 | 4.7 ± 0.1 a | 4.28 ± 0.04 b | 0.40 ± 0.02 a | 1.25 ± 0.06 a |
| 60 | 5.1 ± 0.2 a | 4.20 ± 0.05 a | 0.45 ± 0.03 a | 1.32 ± 0.07 a |
| 40 | 5.5 ± 0.2 a | 4.15 ± 0.06 a | 0.50 ± 0.04 a | 1.40 ± 0.08 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bakhsh, M.S.; Sarfraz, M.; Ilahi, N.; Rehman, M.U.; Shamshad, H.; Usman, M.; Mobin, I.; Bibi, M. Effects of Deficit Irrigation on Growth, Yield, and Quality of Tomato Under Semi-Arid Regions. Biol. Life Sci. Forum 2025, 51, 1. https://doi.org/10.3390/blsf2025051001
Bakhsh MS, Sarfraz M, Ilahi N, Rehman MU, Shamshad H, Usman M, Mobin I, Bibi M. Effects of Deficit Irrigation on Growth, Yield, and Quality of Tomato Under Semi-Arid Regions. Biology and Life Sciences Forum. 2025; 51(1):1. https://doi.org/10.3390/blsf2025051001
Chicago/Turabian StyleBakhsh, Muhammad Sanwal, Maha Sarfraz, Noor Ilahi, Mujeeb Ur Rehman, Hasnain Shamshad, Muhammad Usman, Iqra Mobin, and Maryam Bibi. 2025. "Effects of Deficit Irrigation on Growth, Yield, and Quality of Tomato Under Semi-Arid Regions" Biology and Life Sciences Forum 51, no. 1: 1. https://doi.org/10.3390/blsf2025051001
APA StyleBakhsh, M. S., Sarfraz, M., Ilahi, N., Rehman, M. U., Shamshad, H., Usman, M., Mobin, I., & Bibi, M. (2025). Effects of Deficit Irrigation on Growth, Yield, and Quality of Tomato Under Semi-Arid Regions. Biology and Life Sciences Forum, 51(1), 1. https://doi.org/10.3390/blsf2025051001

