Cross-Talk Between Physical Activity, Diet, Gut Microbiota and Skeletal Muscle †
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cataldi, S.; Bonavolontà, V.; Poli, L.; Clemente, F.M.; De Candia, M.; Carvutto, R.; Silva, A.F.; Badicu, G.; Greco, G.; Fischetti, F. The Relationship between Physical Activity, Physical Exercise, and Human Gut Microbiota in Healthy and Unhealthy Subjects: A Systematic Review. Biology 2022, 11, 479. [Google Scholar] [CrossRef] [PubMed]
- Min, L.; Ablitip, A.; Wang, R.; Luciana, T.; Wei, M.; Ma, X. Effects of Exercise on Gut Microbiota of Adults: A Systematic Review and Meta-Analysis. Nutrients 2024, 16, 1070. [Google Scholar] [CrossRef] [PubMed]
- Ramos, S.; Martín, M.Á. Impact of diet on gut microbiota. Curr. Opin. Food Sci. 2021, 37, 83–90. [Google Scholar] [CrossRef]
- Clauss, M.; Gérard, P.; Mosca, A.; Leclerc, M. Interplay Between Exercise and Gut Microbiome in the Context of Human Health and Performance. Front. Nutr. 2021, 8, 637010. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yan, H.; Zhu, J.; Zhao, J.; Zhang, H.; Chen, W.; Lu, W. Gut microbiota-directed dietary factors enhance exercise performance in mice. Food Front. 2024, 5, 2705–2720. [Google Scholar] [CrossRef]
- Dziewiecka, H.; Buttar, H.S.; Kasperska, A.; Ostapiuk–Karolczuk, J.; Domagalska, M.; Cichoń, J.; Skarpańska-Stejnborn, A. Physical activity induced alterations of gut microbiota in humans: A systematic review. BMC Sports Sci. Med. Rehabil 2022, 14, 122. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Chen, Z.; Wu, W.; Lin, Q.; Liang, Y. High animal protein diet and gut microbiota in human health. Crit. Rev. Food Sci. Nutr. 2022, 62, 6225–6237. [Google Scholar] [CrossRef] [PubMed]
- Cella, V.; Bimonte, V.M.; Sabato, C.; Paoli, A.; Baldari, C.; Campanella, M.; Lenzi, A.; Ferretti, E.; Migliaccio, S. Nutrition and Physical Activity-Induced Changes in Gut Microbiota: Possible Implications for Human Health and Athletic Performance. Foods 2021, 10, 3075. [Google Scholar] [CrossRef] [PubMed]
- Donati Zeppa, S.; Agostini, D.; Gervasi, M.; Annibalini, G.; Amatori, S.; Ferrini, F.; Sisti, D.; Piccoli, G.; Barbieri, E.; Sestili, P.; et al. Mutual Interactions among Exercise, Sport Supplements and Microbiota. Nutrients 2019, 12, 17. [Google Scholar] [CrossRef] [PubMed]
- Bonomini-Gnutzmann, R.; Plaza-Diaz, J. Effect of Intensity and Duration of Exercise on Gut Microbiota in Humans: A Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 9518. [Google Scholar] [CrossRef] [PubMed]
- Campaniello, D.; Corbo, M.R.; Sinigaglia, M.; Speranza, B.; Racioppo, A.; Altieri, C.; Bevilacqua, A. How Diet and Physical Activity Modulate Gut Microbiota: Evidence, and Perspectives. Nutrients 2022, 14, 2456. [Google Scholar] [CrossRef] [PubMed]
- Cronin, O.; Barton, W.; Skuse, P.; Penney, N.C.; Garcia-Perez, I.; Murphy, E.F.; Woods, T.; Nugent, H.; Fanning, A.; Melgar, S.; et al. A Prospective Metagenomic and Metabolomic Analysis of the Impact of Exercise and/or Whey Protein Supplementation on the Gut Microbiome of Sedentary Adults. mSystems 2018, 3, e00044-18. [Google Scholar] [CrossRef] [PubMed]
- Marineli, R.D.S.; Moura, C.S.; Moraes, É.A.; Lenquiste, S.A.; Lollo, P.C.B.; Morato, P.N.; Amaya-Farfan, J.; Maróstica, M.R. Chia (Salvia hispanica L.) enhances HSP, PGC-1α expressions and improves glucose tolerance in diet-induced obese rats. Nutrition 2015, 31, 740–748. [Google Scholar] [CrossRef] [PubMed]
Diet | Study | Population | Duration | Physical Activity | Effect on Muscle | Effect on Gut Microbiota | Reference |
---|---|---|---|---|---|---|---|
Gavage with E. rectale, Fructus Arctii extract, Agaricus blazei, polysaccharieds galactooligosaccharides, and curcumin | Animal | 50 male and ICR mice, pathogen-free, weighing 18–22 g, were used. | Dietary intervention: 4 weeks. Physical activity (weightless swimming): daily for 2 weeks. | Exercise performance was assessed through exhaustive swimming with 5% tail loading. | ↑ muscle glycogen, endurance, and strength in groups receiving E. rectale and Curcumin, Fructus Arctii, galactooligosaccharides | The abundance of bacteria like E. rectale and Veillonella was influenced by different dietary interventions | Wang et al., 2024 [5] |
High-protein diets (HPDs) | Human | Athletes: moderate to high-intensity exercises. Older Adults: typically over 70. | Athletes: Probiotic supplementation for 14 weeks. Older Adults: 10-week HPD (1.3 g/kg/day) | Athletes: Regular, intense, or prolonged exercise with strength training. Older Adults: Physical deterioration affects function. | Athletes: ↑ muscle mass and improved recovery; Older Adults: enhanced strength and mass | Promote beneficial bacteria (Bifidobacterium, Akkermansia); aging ↓ microbiota diversity, leading to protein synthesis disorders in skeletal muscle | Cai et al., 2021 [7] |
Not specified | Human | 32 previously sedentary normal-weight or obese adults. | 6 weeks (+ 6-week washout period). | Endurance exercise. | Not specified | ↑ Faecalibacterium and ↓ Bacteroides in normal-weight subjects; opposite trend in obese individuals | Cella et al., 2021 [8] |
Polyphenol-rich foods or supplements (e.g., pomegranate polyphenols). | Human | Athletes, or individuals engaged in physical activity. | No specific study duration mentioned. | Involved in sports practices. | Polyphenols may help ↓ muscle fatigue and weakness by ↓ oxidative stress, inflammation due to their antioxidant properties | Polyphenols promote the ↑ of Lactobacilli, Bifidobacteria, Akkermansia, and Faecalibacterium prausnitzii | Zeppa et al., 2019 [9] |
Mediterranean diet (MD): plant-rich diets with carbohydrates +vegetable/fruit intake. | Human | Healthy adults, patients with IBD, cyclists, runners. | Exercise programs of at least 12 weeks. | Aerobic exercise + resistance training, with moderate to vigorous intensity. | Not specified | ↑ Prevotella, Faecalibacterium, and overall microbial diversity; changes linked to training duration and intensity | Bonomini- Gnutzmann et al., 2022 [10] |
High-fat diet (HFD) | Animal | Rats | 5 weeks. | Voluntary wheel running | Indirect improvement due to enhanced gut microbiota, better metabolic regulation | Modulated gut composition, ↑ butyrate production, changes in cecumsize. | Campaniello et al., 2022 [11] |
No specific diet (with/without Supplementation of whey protein). | Human | Adults (participants, aged 18–40 years) | 8 weeks. | Aerobic training + resistance training (3 times a week for 8 weeks) | Not specified | Increasing viral species: ↑ Lactococcus phage. ↑ TMAO (linked to inflammation and CVD). | Cronin et al., 2018 [12] |
Standard AIN-93M diet. High-fat and high-fructose (HFF). Chia seed +oil. | Animal | 48 male Wistar rats (aged 21–23 days at the start). | 12 weeks. | Not specified | ↓ HSP60 expression (only in chia seed short treatment) ↓ AMPK ↓ GPx | Not specified | Marineli et al., 2015 [13] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaboub, N.M.; Bougherara, H.; Boukhechem, S.; Della Malva, A.; Albenzio, M.; Boussena, S.; Monnoye, M.; Gérard, P.; Dib, A.L. Cross-Talk Between Physical Activity, Diet, Gut Microbiota and Skeletal Muscle. Biol. Life Sci. Forum 2025, 49, 5. https://doi.org/10.3390/blsf2025049005
Zaboub NM, Bougherara H, Boukhechem S, Della Malva A, Albenzio M, Boussena S, Monnoye M, Gérard P, Dib AL. Cross-Talk Between Physical Activity, Diet, Gut Microbiota and Skeletal Muscle. Biology and Life Sciences Forum. 2025; 49(1):5. https://doi.org/10.3390/blsf2025049005
Chicago/Turabian StyleZaboub, Nada Malak, Hithem Bougherara, Said Boukhechem, Antonella Della Malva, Marzia Albenzio, Sabrina Boussena, Magali Monnoye, Philippe Gérard, and Amira Leila Dib. 2025. "Cross-Talk Between Physical Activity, Diet, Gut Microbiota and Skeletal Muscle" Biology and Life Sciences Forum 49, no. 1: 5. https://doi.org/10.3390/blsf2025049005
APA StyleZaboub, N. M., Bougherara, H., Boukhechem, S., Della Malva, A., Albenzio, M., Boussena, S., Monnoye, M., Gérard, P., & Dib, A. L. (2025). Cross-Talk Between Physical Activity, Diet, Gut Microbiota and Skeletal Muscle. Biology and Life Sciences Forum, 49(1), 5. https://doi.org/10.3390/blsf2025049005