Comparative Evaluation of 16S rRNA and Housekeeping Gene-Specific Primer Pairs for Rhizobia and Agrobacteria Metagenomics †
Abstract
1. Introduction
2. Material and Methods
2.1. Data Collection
2.1.1. 16S rRNA Gene Sequences
N° | Rhizobia Genus 1 | Genus Type Species 3 | Genome Accession | Gene Full-Length Size (bp) | ||
---|---|---|---|---|---|---|
16S rDNA | gyrB | rpoB | ||||
1 | Allorhizobium | Allorhizobium undicola ORS 992T | NZ_JHXQ01000045 | 1482 | 2436 | 4140 |
2 | Aminobacter | Aminobacter aminovorans DSM 7048T | NZ_SLZO01000023 | 1484 | 2448 | 4134 |
3 | Azorhizobium | Azorhizobium caulinodans ORS 571T | AP009384 | 1482 | 2427 | 4131 |
4 | Bradyrhizobium | Bradyrhizobium japonicum USDA 6T | NC_017249 | 1488 | 2436 | 4119 |
5 | Cupriavidus 2 | Cupriavidus necator N-1T | CNE_1c16970 | 1531 | 2526 | 4107 |
6 | Devosia | Devosia riboflavina IFO13584T | NZ_JQGC01000043 | 1481 | 2454 | 4134 |
7 | Ensifer | Ensifer adhaerens Casida AT | NZ_CP015880 | 1484 | 2436 | 4140 |
8 | Mesorhizobium | Mesorhizobium loti DSM 2626T | NZ_QGGH01000001 | 1484 | 2472 | 4143 |
9 | Methylobacterium | Methylobacterium organophilum NBRC 15689T | NZ_BPQV01000023 | 1482 | 2448 | 4131 |
10 | Microvirga | Microvirga subterranea DSM 14364T | NZ_QQBB01000028 | 1486 | 2427 | 4131 |
11 | Neorhizobium | Neorhizobium galegae HAMBI 540T | HG938353 | 1480 | 2436 | 4137 |
12 | Ochrobactrum | Ochrobactrum anthropi ATCC 49188T | NC_009667 | 1482 | 2424 | 4134 |
13 | Paraburkholderia 2 | Paraburkholderia graminis LMG 18924T | CADIK010000048 | 1532 | 2472 | 4107 |
14 | Pararhizobium | Pararhizobium giardinii H152T | NZ_KB902704 | 1484 | 2436 | 4140 |
15 | Phyllobacterium | Phyllobacterium myrsinacearum DSM 5892T | NZ_SHLH01000013 | 1484 | 2424 | 4155 |
16 | Rhizobium | Rhizobium leguminosarum USDA 2370T | GCA_003058385 | 1480 | 2436 | 4140 |
17 | Shinella | Shinella granuli DSM 18401T | NZ_SLVX01000061 | 1484 | 2433 | 4140 |
18 | Trinickia 2 | Trinickia symbiotica JPY-345T | NZ_PTIR01000049 | 1530 | 2472 | 4107 |
19 | Agrobacterium | Agrobacterium tumefaciens ATCC 4720T | JAAQPP010000028 | 1484 | 2436 | 4137 |
2.1.2. Housekeeping Gene Sequences
2.2. Data Analysis
2.2.1. Re-Evaluation of the Discriminatory Power of 16S rRNA Gene V-Regions for Rhizobia and Agrobacteria
2.2.2. Assessment of the Discriminatory Power of Housekeeping Genes for Rhizobia and Agrobacteria
Target | Set of Primers | Forward Sequence (5′ to 3′) | Reverse Sequence (5′ to 3′) | Amplicon Size (bp) 3 (Rhizobia and Agrobacteria) |
---|---|---|---|---|
16S rRNA gene 1 | ||||
V1–V2 | 27F/337R | AGAGTTTGATCMTGGCTCAG | CYIACTGCTGCCTCCCGTAG | 320–350 |
V1–V3 | 27F/534R | AGAGTTTGATCMTGGCTCAG | ATTACCGCGGCTGCTGG | 468–523 |
V3–V4 | 341F/805R | CCTACGGGNGGCWGCAG | GACTACHVGGGTATCTAATCC | 440–465 |
V3–V5 | 341F/926Rb | CCTACGGGNGGCWGCAG | CCGTCAATTYMTTTRAGT | 560–585 |
V4 | 515F/806R | GTGCCAGCMGCCGCGGTAA | GGACTACHVGGGTWTCTAAT | 292 |
V4–V5 | 515F–Y/909-928R | GTGYCAGCMGCCGCGGTAA | CCCCGYCAATTCMTTTRAGT | 413 |
V5–V7 | 799F/1193R | AACMGGATTAGATACCCKG | ACGTCATCCCCACCTTCC | 409–417 |
V6–V9 | 928F/1492Rmod | TAAAACTYAAAKGAATTGACGGGG | TACGGYTACCTTGTTAYGACTT | 605–612 |
V7–V9 | 1100F/1492Rmod | YAACGAGCGCAACCC | TACGGYTACCTTGTTAYGACTT | 408–415 |
V1–V9 | 27F/1492Rmod | AGAGTTTGATCMTGGCTCAG | TACGGYTACCTTGTTAYGACTT | 1445–1497 |
Housekeeping genes 2 | ||||
“gyrB-1” | gyrB_aF64/gyrB_aR353 | MGNCCNGSNATGTAYATHGG | ACNCCRTGNARDCCDCCNGA | 287–302 |
“rpoB-1” | rpoB1479-F/rpoB1831-R | GATCGARACGCCGGAAGG | TGCATGTTCGARCCCAT | 378–384 |
“rpoB-2” | Univ_rpoB_F_deg/ Univ_rpoB_R_deg | GGYTWYGAAGTNCGHGACGTDCA | TGACGYTGCATGTTBGMRCCCATMA | 434–440 |
2.2.3. Comparative Analysis of the Discriminatory Power of 16S rRNA and Housekeeping Genes for Rhizobia and Agrobacteria
3. Results
3.1. Taxonomic Resolution of 16S rDNA V-Regions Re-Evaluated for Rhizobia and Agrobacteria
3.2. The rpoB and gyrB Markers Outcompeted the 16S rDNA
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
16S rDNA Region | Type of Sample | Main Findings | Reference |
---|---|---|---|
V4–V5 | Soil samples and in silico analysis | V4–V5 marker failed to discriminate the Aminobacter–Mesorhizobium genera complex. It partially discriminated the Rhizobium–Allorhizobium–Neorhizobium–Pararhizobium complex. V5–V7 was found to be the most discriminant region | [17] |
V3–V4 and V5–V7 | Agrobacterium crown gall samples (gallobiome) | V3–V4 was outcompeted by V5–V7. V5–V7 yielded the highest number (4.3 fold) and percentage of bacterial reads after the HTAS analysis | [27] |
V4, V4–V5 | Soil samples | The V4-region failed to discriminate the Rhizobium complex, Burkholderia complex and Methylobacterium complex | [28] |
V1–V3, V3–V4, V4, V4–V5, V6–V8, V6–V9 | In silico analysis of 16 plant-related microbial genera | Insufficient resolution for several 16S V-regions. The V4 region failed to distinguish all the selected genera. Moreover, the widely used V3–V4 region was found to be less discriminant than V1–V3 | [19] |
full 16S rRNA gene | Bulk soil and soybean rhizosphere | Oxford Nanopore Technologies long-read sequencing was used to identify Bradyrhizobium populations at the species level | [29] |
References
- Woese, C.R.; Fox, G.E. Phylogenetic structure of the prokaryotic domain: The primary kingdoms. Proc. Natl. Acad. Sci. USA 1977, 74, 5088–5090. [Google Scholar] [CrossRef] [PubMed]
- Bartoš, O.; Chmel, M.; Swierczková, I. The overlooked evolutionary dynamics of 16S rRNA revises its role as the “gold standard” for bacterial species identification. Sci. Rep. 2024, 14, 9067. [Google Scholar] [CrossRef]
- Edgar, R.C. Updating the 97% identity threshold for 16S ribosomal RNA OTUs. Bioinformatics 2018, 34, 2371–2375. [Google Scholar] [CrossRef] [PubMed]
- Wasimuddin; Schlaeppi, K.; Ronchi, F.; Leib, S.L.; Erb, M.; Ramette, A. Evaluation of primer pairs for microbiome profiling from soils to humans within the One Health framework. Mol. Ecol. Resour. 2020, 20, 1558–1571. [CrossRef]
- Apprill, A.; McNally, S.; Parsons, R.J.; Weber, L.K. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat. Microb. Ecol. 2015, 75, 129–137. [Google Scholar] [CrossRef]
- Johnson, J.S.; Spakowicz, D.J.; Hong, B.-Y.; Petersen, L.M.; Demkowicz, P.; Chen, L.; Leopold, S.R.; Hanson, B.M.; Agresta, H.O.; Gerstein, M.; et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat. Commun. 2019, 10, 5029. [Google Scholar] [CrossRef]
- de Lajudie, P.M.; Andrews, M.; Ardley, J.; Eardly, B.; Jumas-Bilak, E.; Kuzmanović, N.; Lassalle, F.; Lindström, K.; Mhamdi, R.; Martínez-Romero, E.; et al. Minimal standards for the description of new genera and species of rhizobia and agrobacteria. Int. J. Syst. Evol. Microbiol. 2019, 69, 1852–1863. [Google Scholar] [CrossRef]
- Ferdous, A.J.; Wang, X.; Lewis, K.; Zak, J. Comparative analysis of rhizobial and bacterial communities in experimental cotton fields: Impacts of conventional and conservation soil management in the Texas High Plains. Soil Tillage Res. 2024, 236, 105920. [Google Scholar] [CrossRef]
- Taylor, B.N.; Komatsu, K.J. More diverse rhizobial communities can lead to higher symbiotic nitrogen fixation rates, even in nitrogen-rich soils. Proc. R. Soc. B Biol. Sci. 2024, 291, 20240765. [Google Scholar] [CrossRef]
- Kwon, S.-W.; Park, J.-Y.; Kim, J.-S.; Kang, J.-W.; Cho, Y.-H.; Lim, C.-K.; Parker, M.A.; Lee, G.-B. Phylogenetic analysis of the genera Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium on the basis of 16S rRNA gene and internally transcribed spacer region sequences. Int. J. Syst. Evol. Microbiol. 2005, 55, 263–270. [Google Scholar] [CrossRef]
- Paulitsch, F.; Dos Reis, F.B.; Hungria, M. Twenty years of paradigm-breaking studies of taxonomy and symbiotic nitrogen fixation by beta-rhizobia, and indication of Brazil as a hotspot of Paraburkholderia diversity. Arch. Microbiol. 2021, 203, 4785–4803. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Pei, T.; Yi, S.; Du, J.; Zhang, X.; Deng, X.; Yao, Q.; Deng, M.-R.; Zhu, H. Phylogenomic Analysis Substantiates the gyrB Gene as a Powerful Molecular Marker to Efficiently Differentiate the Most Closely Related Genera Myxococcus, Corallococcus, and Pyxidicoccus. Front. Microbiol. 2021, 12, 763359. [Google Scholar] [CrossRef] [PubMed]
- Ogier, J.-C.; Pagès, S.; Galan, M.; Barret, M.; Gaudriault, S. rpoB, a promising marker for analyzing the diversity of bacterial communities by amplicon sequencing. BMC Microbiol. 2019, 19, 171. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.X.; Guo, H.J.; Jiao, J.; Zhang, P.; Xiong, H.Y.; Chen, W.X.; Tian, C.F. Pyrosequencing of rpoB uncovers a significant biogeographical pattern of rhizobial species in soybean rhizosphere. J. Biogeogr. 2017, 44, 1491–1499. [Google Scholar] [CrossRef]
- Wang, X.L.; Cui, W.J.; Feng, X.Y.; Zhong, Z.M.; Li, Y.; Chen, W.X.; Chen, W.F.; Shao, X.M.; Tian, C.F. Rhizobia inhabiting nodules and rhizosphere soils of alfalfa: A strong selection of facultative microsymbionts. Soil Biol. Biochem. 2018, 116, 340–350. [Google Scholar] [CrossRef]
- Mousavi, S.A.; Gao, Y.; Penttinen, P.; Frostegård, Å.; Paulin, L.; Lindström, K. Using amplicon sequencing of rpoB for identification of inoculant rhizobia from peanut nodules. Lett. Appl. Microbiol. 2022, 74, 204–211. [Google Scholar] [CrossRef]
- Gnangui, S.L.E.; Fossou, R.K.; Ebou, A.; Amon, C.E.R.; Koua, D.K.; Kouadjo, C.G.Z.; Cowan, D.A.; Zézé, A. The Rhizobial Microbiome from the Tropical Savannah Zones in Northern Côte d’Ivoire. Microorganisms 2021, 9, 1842. [Google Scholar] [CrossRef]
- Alessa, O.; Ogura, Y.; Fujitani, Y.; Takami, H.; Hayashi, T.; Sahin, N.; Tani, A. Comprehensive Comparative Genomics and Phenotyping of Methylobacterium Species. Front. Microbiol. 2021, 12, 740610. [Google Scholar] [CrossRef]
- Hrovat, K.; Dutilh, B.E.; Medema, M.H.; Melkonian, C. Taxonomic resolution of different 16S rRNA variable regions varies strongly across plant-associated bacteria. ISME Commun. 2024, 4, ycae034. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef]
- VanInsberghe, D.; Arevalo, P.; Chien, D.; Polz, M.F. How can microbial population genomics inform community ecology? Philos. Trans. R. Soc. B Biol. Sci. 2020, 375, 20190253. [Google Scholar] [CrossRef] [PubMed]
- Barret, M.; Briand, M.; Bonneau, S.; Préveaux, A.; Valière, S.; Bouchez, O.; Hunault, G.; Simoneau, P.; Jacques, M.A. Emergence shapes the structure of the seed microbiota. Appl. Environ. Microbiol. 2015, 81, 1257–1266. [Google Scholar] [CrossRef]
- Baker, G.C.; Smith, J.J.; Cowan, D.A. Review and re-analysis of domain-specific 16S primers. J. Microbiol. Methods 2003, 55, 541–555. [Google Scholar] [CrossRef]
- Eloe-Fadrosh, E.A.; Ivanova, N.N.; Woyke, T.; Kyrpides, N.C. Metagenomics uncovers gaps in amplicon-based detection of microbial diversity. Nat. Microbiol. 2016, 1, 15032. [Google Scholar] [CrossRef] [PubMed]
- Schellenberg, J.; Links, M.G.; Hill, J.E.; Dumonceaux, T.J.; Peters, G.A.; Tyler, S.; Ball, T.B.; Severini, A.; Plummer, F.A. Pyrosequencing of the chaperonin-60 universal target as a tool for determining microbial community composition. Appl. Environ. Microbiol. 2009, 75, 2889–2898. [Google Scholar] [CrossRef] [PubMed]
- Schellenberg, J.; Links, M.G.; Hill, J.E.; Hemmingsen, S.M.; Peters, G.A.; Dumonceaux, T.J. Pyrosequencing of chaperonin-60 (cpn60) amplicons as a means of determining microbial community composition. In High-Throughput Next Generation Sequencing: Methods and Applications; Kwon, Y.M., Ricke, S.C., Eds.; Humana Press: Totowa, NJ, USA, 2011; Volume 733, pp. 143–158. [Google Scholar]
- Wang, S.-C.; Chen, A.-P.; Chou, S.-J.; Kuo, C.-H.; Lai, E.-M. Soil Inoculation and Blocker-Mediated Sequencing Show Effects of the Antibacterial T6SS on Agrobacterial Tumorigenesis and Gallobiome. mBio 2023, 14, e00177-23. [Google Scholar] [CrossRef]
- Abe, J.N.A.; Dhungana, I.; Nguyen, N.H. Legume-nodulating rhizobia are widespread in soils and plants across the island of O’ahu, Hawai’i. PLoS ONE 2023, 18, e0291250. [Google Scholar] [CrossRef]
- Sarao, S.K.; Boothe, V.; Das, B.K.; Gonzalez-Hernandez, J.L.; Brözel, V.S. Bradyrhizobium and the soybean rhizosphere: Species level bacterial population dynamics in established soybean fields, rhizosphere and nodules. Plant Soil 2025, 508, 515–530. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fossou, R.K.; Zézé, A. Comparative Evaluation of 16S rRNA and Housekeeping Gene-Specific Primer Pairs for Rhizobia and Agrobacteria Metagenomics. Biol. Life Sci. Forum 2025, 46, 1. https://doi.org/10.3390/blsf2025046001
Fossou RK, Zézé A. Comparative Evaluation of 16S rRNA and Housekeeping Gene-Specific Primer Pairs for Rhizobia and Agrobacteria Metagenomics. Biology and Life Sciences Forum. 2025; 46(1):1. https://doi.org/10.3390/blsf2025046001
Chicago/Turabian StyleFossou, Romain Kouakou, and Adolphe Zézé. 2025. "Comparative Evaluation of 16S rRNA and Housekeeping Gene-Specific Primer Pairs for Rhizobia and Agrobacteria Metagenomics" Biology and Life Sciences Forum 46, no. 1: 1. https://doi.org/10.3390/blsf2025046001
APA StyleFossou, R. K., & Zézé, A. (2025). Comparative Evaluation of 16S rRNA and Housekeeping Gene-Specific Primer Pairs for Rhizobia and Agrobacteria Metagenomics. Biology and Life Sciences Forum, 46(1), 1. https://doi.org/10.3390/blsf2025046001