Visualization of Multichannel Surface Electromyography as a Map of Muscle Component Activation †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. sEMG
2.3. Experimental Procedure
2.4. Data Processing
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alessandro, C.; Delis, I.; Nori, F.; Panzeri, S.; Berret, B. Muscle Synergies in Neuroscience and Robotics: From Input-Space to Task-Space Perspectives. Front. Comput. Neurosci. 2013, 7, 43. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, D.; Yan, Z.; Yu, L.; Gui, L.; Yang, C.; Yang, W. Optimizing Exoskeleton Assistance: Muscle Synergy-Based Actuation for Personalized Hip Exoskeleton Control. Actuators 2024, 13, 54. [Google Scholar] [CrossRef]
- Cole, N.M.; Ajiboye, A.B. Muscle Synergies for Predicting Non-Isometric Complex Hand Function for Commanding FES Neuroprosthetic Hand Systems. J. Neural Eng. 2019, 16, 056018. [Google Scholar] [CrossRef] [PubMed]
- Ao, X.; Wang, F.; Wang, R.; She, J. Muscle Synergy Analysis for Gesture Recognition Based on sEMG Images and Shapley Value. Intell. Robot. 2023, 3, 495–513. [Google Scholar] [CrossRef]
- Kim, J.; Yang, S.; Koo, B.; Lee, S.; Park, S.; Kim, S.; Cho, K.H.; Kim, Y. sEMG-Based Hand Posture Recognition and Visual Feedback Training for the Forearm Amputee. Sensors 2022, 22, 7984. [Google Scholar] [CrossRef] [PubMed]
- Madarshahian, S.; Letizi, J.; Latash, M.L. Synergic Control of a Single Muscle: The Example of Flexor Digitorum Superficialis. J. Physiol. 2021, 599, 1261–1279. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Koo, B.; Nam, Y.; Kim, Y. sEMG-Based Hand Posture Recognition Considering Electrode Shift, Feature Vectors, and Posture Groups. Sensors 2021, 21, 7681. [Google Scholar] [CrossRef] [PubMed]
- Faust, O.; Hagiwara, Y.; Hong, T.J.; Lih, O.S.; Acharya, U.R. Deep Learning for Healthcare Applications Based on Physiological Signals: A Review. Comput. Methods Programs Biomed. 2018, 161, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Barbero, M.; Merletti, R.; Rainoldi, A. Atlas of Muscle Innervation Zones; Springer Milan: Milano, Italy, 2012; ISBN 978-88-470-2462-5. [Google Scholar]
- Rojas-Martínez, M.; Mañanas, M.A.; Alonso, J.F. High-Density Surface EMG Maps from Upper-Arm and Forearm Muscles. J. NeuroEng. Rehabil. 2012, 9, 85. [Google Scholar] [CrossRef] [PubMed]
- Pale, U.; Atzori, M.; Müller, H.; Scano, A. Variability of Muscle Synergies in Hand Grasps: Analysis of Intra- and Inter-Session Data. Sensors 2020, 20, 4297. [Google Scholar] [CrossRef] [PubMed]
- Jakubowitz, E.; Schmidt, L.; Obermeier, A.; Spindeldreier, S.; Windhagen, H.; Hurschler, C. Investigation of Adaptive Muscle Synergy Modulated Motor Responses to Grasping Perturbations. Sci. Rep. 2024, 14, 18493. [Google Scholar] [CrossRef]
- Iskarevskii, G.V.; Pekonidi, A.A.; Beknazarova, A.M.; Pozdnyakova, A.E.; Onishchenko, D.A.; Kirsanov, A.S.; Baltin, M.E.; Bravyy, Y.R. Effect of Blood Flow Restriction on Recruitment Threshold and Amplitude- Frequency Characteristics of Motor Units During Exercise. In Proceedings of the Sixth International Conference Neurotechnologies and Neurointerfaces, Kaliningrad, Russia, 19–21 September 2024; pp. 44–46. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pozdnyakova, A.E.; Savon, G.K.; Lev, L.P.; Baltin, M.E.; Bravyy, Y.R.; Onishchenko, D.A. Visualization of Multichannel Surface Electromyography as a Map of Muscle Component Activation. Biol. Life Sci. Forum 2025, 42, 1. https://doi.org/10.3390/blsf2025042001
Pozdnyakova AE, Savon GK, Lev LP, Baltin ME, Bravyy YR, Onishchenko DA. Visualization of Multichannel Surface Electromyography as a Map of Muscle Component Activation. Biology and Life Sciences Forum. 2025; 42(1):1. https://doi.org/10.3390/blsf2025042001
Chicago/Turabian StylePozdnyakova, Alisa E., Galina K. Savon, Leleko P. Lev, Maxim E. Baltin, Yan R. Bravyy, and Dmitriy A. Onishchenko. 2025. "Visualization of Multichannel Surface Electromyography as a Map of Muscle Component Activation" Biology and Life Sciences Forum 42, no. 1: 1. https://doi.org/10.3390/blsf2025042001
APA StylePozdnyakova, A. E., Savon, G. K., Lev, L. P., Baltin, M. E., Bravyy, Y. R., & Onishchenko, D. A. (2025). Visualization of Multichannel Surface Electromyography as a Map of Muscle Component Activation. Biology and Life Sciences Forum, 42(1), 1. https://doi.org/10.3390/blsf2025042001