Effect of Vineyard Location on Assyrtiko Grape Ripening in Santorini and Its Wine’s Characteristics †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Grape Sampling and Harvest
2.2. Vinification
2.3. Gas Chromatography–Mass Spectrometry (GC-MS/MS)
2.4. Sensory Evaluation—Questionnaire
2.5. Statistical Analysis
3. Results
3.1. Soil–Climatic System and Ripening
3.2. Alcoholic Fermentation and Characteristics of Wine
3.3. Volatile Profile of Wines
3.4. Sensory Evaluation Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Organisation of Vine and Wine (OIV). Compendium of International Methods of Wine And Must Analysis. 2024. Available online: https://www.oiv.int/standards/compendium-of-international-methods-of-wine-and-must-analysis (accessed on 31 October 2024).
- Benchmark International. 2023 Global Wine Market Report. 2023. Available online: https://www.benchmarkintl.com/insights/2023-global-wine-market-report/ (accessed on 10 December 2024).
- Wolkovich, E.M.; García de Cortázar-Atauri, I.; Morales-Castilla, I.; Nicholas, K.A.; Lacombe, T. From Pinot to Xinomavro in the world’s future wine-growing regions. Nat. Clim. Change 2018, 8, 29–37. [Google Scholar] [CrossRef]
- Van Leeuwen, C.; Seguin, G. The concept of terroir in viticulture. J. Wine Res. 2006, 17, 1–10. [Google Scholar] [CrossRef]
- Cook, B.I.; Anchukaitis, K.J.; Touchan, R.; Meko, D.M.; Cook, E.R. Spatiotemporal drought variability in the Mediterranean over the last 900 years. J. Geophys. Res. Atmos. 2016, 121, 2060–2074. [Google Scholar] [CrossRef]
- Urdiales-Flores, D.; Zittis, G.; Hadjinicolaou, P.; Osipov, S.; Klingmüller, K.; Mihalopoulos, N.; Kanakidou, M.; Economou, T.; Lelieveld, J. Drivers of accelerated warming in Mediterranean climate-type regions. Npj Clim. Atmos. Sci. 2023, 6, 97. [Google Scholar] [CrossRef]
- Lazoglou, G.; Hadjinicolaou, P.; Sofokleous, I.; Bruggeman, A.; Zittis, G. Climate change and extremes in the Mediterranean island of Cyprus: From historical trends to future projections. Environ. Res. Commun. 2024, 6, 095020. [Google Scholar] [CrossRef]
- Koundouras, S.; Marinos, V.; Gkoulioti, A.; Kotseridis, Y.; van Leeuwen, C. Influence of Vineyard Location and Vine Water Status on Fruit Maturation of Nonirrigated Cv. Agiorgitiko (Vitis vinifera L.). Effects on Wine Phenolic and Aroma Components. J. Agric. Food Chem. 2006, 54, 5077–5086. [Google Scholar] [CrossRef]
- Grainger, C.; Yeh, A.; Byer, S.; Hjelmeland, A.; Lima, M.M.M.; Runnebaum, R.C. Vineyard site impact on the elemental composition of Pinot noir wines. Food Chem. 2021, 334, 127386. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Ough, C.S. Effect of Vineyard Locations, Varieties, and Rootstocks on the Juice Amino Acid Composition of Several Cultivars. Am. J. Enol. Vitic. 1989, 40, 135. [Google Scholar] [CrossRef]
- Ubeda, C.; Gil i Cortiella, M.; Barrio-Galán, R.; Peña-Neira, A. Influence of Maturity and Vineyard Location on Free and Bound Aroma Compounds of Grapes from the País Cultivar. S. Afr. J. Enol. Vitic. 2017, 38, 201–211. [Google Scholar] [CrossRef]
- Vaudour, E.; Costantini, E.; Jones, G.V.; Mocali, S. An overview of the recent approaches to terroir functional modelling, footprinting and zoning. SOIL 2015, 1, 287–312. [Google Scholar] [CrossRef]
- Mpelasoka, B.S.; Schachtman, D.P.; Treeby, M.T.; Thomas, M.R. A review of potassium nutrition in grapevines with special emphasis on berry accumulation. Aust. J. Grape Wine Res. 2003, 9, 154–168. [Google Scholar] [CrossRef]
- Skinner, P.W.; Ishii, R.; O’Mahony, M.; Matthews, M. Sensory attributes of wines made from vines of differing phosphorus status: This article is published in cooperation with the 21th GIESCO International Meeting, June 23–28 2019, Thessaloniki, Greece. Guests editors: Stefanos Koundouras and Laurent Torregrosa. OENO One 2019, 53, 347–361. [Google Scholar] [CrossRef]
- Sara Spayd, E.; Stevens, R.G.; Wample, R.L.; Evans, R.G.; Edwards, C.G.; Webster, D. Impact of Nitrogen fertilization on vine performance and juice and wine composition of “Riesling” Grapes (Vitis Vinifera L.) in Washington State. In Proceedings of the Acta Horticulturae 512: XXV International Horticultural Congress, Part 2: Mineral Nutrition and Grape and Wine Quality, Brussels, Belgium, 2–7 August 2000; pp. 65–76. [Google Scholar]
- Visconti, F.; López, R.; Olego, M.Á. The Health of Vineyard Soils: Towards a Sustainable Viticulture. Horticulturae 2024, 10, 154. [Google Scholar] [CrossRef]
- Iliopoulos, C.; Theodorakopoulou, I.; Liontakis, A.; Angelopoulou, G. Case StudyReport; Structure and Strategy of Wine Cooperatives: The Case of the Santo Wine Cooperative in Santorini, Greece; Wageningen UR: Wageningen, The Netherlands, 2012. [Google Scholar]
- Frankel, R. Wine and Oil Production in Antiquity in Israel and Other Mediterranean Countries; Sheffield Academic Press: Sheffield, UK, 1999. [Google Scholar]
- Xyrafis, E.; Alain, D.; Petoumenou, D.; Ioannis, P.; Biniari, K. The unique and extreme vineyards of Santorini Island (Cyclades). IVES IVES Technical Reviews Vine Wine, 2021. [Google Scholar] [CrossRef]
- Symeou, E.; Galiotou-Panayotou, M.; Kechagia, D.; Kotseridis, Y. A simple method for analysing the major volatile compounds of Asyrtiko wines subjected to pre-fermentative skin maceration. J. Agric. Sci. 2007, 145, 577–585. [Google Scholar] [CrossRef]
- Institut National de l’Origine et de la Qualité (I.NA.O). Cahier Des Charges De L’appellation D’origine Contrôlée «Languedoc» Homologué Par L’arrêté Du 14 Mai 2024; Bulletin Officiel—Ministère de l’Agriculture de la Republique Francaise: Paris, France, 2024. [Google Scholar]
- Avgeli, V.A.; Soteriades, M.; Sakoualou, A. Wine Tourism in Santorini, Crete: Exploring the Behaviour, Motives, and Intentions of Wine Tourists. J. Tour. Hosp. Manag. 2019, 7, 45–60. [Google Scholar]
- Xyrafis, E.; Biniari, K.; Stavrakaki, M. Particle film treatments on ‘Assyrtiko’grapevines enhance physiology and grape attributes in Santorini Island. Not. Bot. Horti Agrobot. Cluj Napoca 2024, 52, 13425. [Google Scholar] [CrossRef]
- Tegopoulos, K.; Tsirka, T.; Stekas, C.; Gerasimidi, E.; Skavdis, G.; Kolovos, P.; Grigoriou, M.E. Spatiotemporal Dynamics of Assyrtiko Grape Microbiota. Microorganisms 2024, 12, 577. [Google Scholar] [CrossRef]
- Ligas, I.; Goulioti, E.; Tarantilis, P.; Kotseridis, Y. A New Simple Method for the Determination of Complex Wine Aroma Compounds Using GC-MS/MS—The Case of the Greek Variety “Agiorgitiko”. AppliedChem 2024, 4, 122–139. [Google Scholar] [CrossRef]
- Leeuwen, C.; Barbe, J.-C.; Darriet, P.; Geffroy, O.; Gomès, E.; Guillaumie, S.; Helwi, P.; Laboyrie, J.; Lytra, G.; Menn, N.L.; et al. Recent advancements in understanding the terroir effect on aromas in grapes and wines. OENO One 2020, 54, 985–1006. [Google Scholar] [CrossRef]
- Kechagia, D.; Paraskevopoulos, Y.; Symeou, E.; Galiotou-Panayotou, M.; Kotseridis, Y. Influence of Prefermentative Treatments to the Major Volatile Compounds of Assyrtiko Wines. J. Agric. Food Chem. 2008, 56, 4555–4563. [Google Scholar] [CrossRef] [PubMed]
- Mansour, G.; Ghanem, C.; Mercenaro, L.; Nassif, N.; Hassoun, G.; Del Caro, A. Effects of altitude on the chemical composition of grapes and wine: A review. OENO One 2022, 56, 227–239. [Google Scholar] [CrossRef]
- Christofi, S.; Papanikolaou, S.; Dimopoulou, M.; Terpou, A.; Cioroiu, I.B.; Cotea, V.; Kallithraka, S. Effect of Yeast Assimilable Nitrogen Content on Fermentation Kinetics, Wine Chemical Composition and Sensory Character in the Production of Assyrtiko Wines. Appl. Sci. 2022, 12, 1405. [Google Scholar] [CrossRef]
- Karampatea, A.; Vrhovšek, U.; Tsakiris, A.; Dimopoulou, M.; Kourkoutas, Y.; Skavdis, G. Organoleptic and Quality Characteristics of Malagousia Variety, Grapes Fermented with Selected Indigenous Yeast Strains. S. Afr. J. Enol. Vitic. 2022, 43, 133–145. [Google Scholar] [CrossRef]
- Peinado, R.A.; Moreno, J.; Bueno, J.E.; Moreno, J.A.; Mauricio, J.C. Comparative study of aromatic compounds in two young white wines subjected to pre-fermentative cryomaceration. Food Chem. 2004, 84, 585–590. [Google Scholar] [CrossRef]
- Kallithraka, S.; Christofi, S.; Dimopoulou, M.; Tsapou, E.A.; Papanikolaou, S. Assyrtiko wines of Santorini produced by different autochthonous yeasts: Differences in aromatic and organoleptic profiles. In Proceedings of the IVES Conference Series IVAS 2022, Weincampus Neustadt, Germany, 3–7 July 2022; International Viticulture and Enology Society: Villenave-d’Ornon, France, 2022. [Google Scholar]
- Tzamourani, A.; Paramithiotis, S.; Favier, M.; Coulon, J.; Moine, V.; Paraskevopoulos, I.; Dimopoulou, M. New Insights into the Production of Assyrtiko Wines from the Volcanic Terroir of Santorini Island Using Lachancea thermotolerans. Microorganisms 2024, 12, 786. [Google Scholar] [CrossRef]
- Etievant, P.X. Wine. In Volatile Compounds in Foods and Beverages; Maarse, H., Ed.; Marcel Dekker: New York, NY, USA, 1991; pp. 483–533. [Google Scholar]
- Yue, X.; Ju, Y.; Cui, Y.; Wei, S.; Xu, H.; Zhang, Z. Evolution of green leaf volatile profile and aroma potential during the berry development in five Vitis vinifera L. Cultivars. Food Chem. X 2023, 18, 100676. [Google Scholar] [CrossRef]
- Reynolds, A.G.; Wardle, D.A.; Hall, J.W.; Dever, M. Fruit Maturation of Four Vitis vinifera Cultivars in Response to Vineyard Location and Basal Leaf Removal. Am. J. Enol. Vitic. 1995, 46, 542. [Google Scholar] [CrossRef]
- Schüttler, A.; Fritsch, S.; Hoppe, J.; Schüßler, C.; Jung, R.; Thibon, C.; Gruber, B.; Blank, M.; Stoll, M.; Revel, G.; et al. Facteurs influenc cant la typicité aromatique des vins du cépage de Vitis vinifera cv. Riesling—Aspects sensoriels, chimiques et viticoles. Rev. Oenologues Tech. Vitivinic. Oenologiques 2013, 40, 36–41. [Google Scholar]
- Gutiérrez-Gamboa, G.; Pszczólkowski, P.; Cañón, P.; Taquichiri, M.A.; Peñarrieta, J.M. UV-B Radiation as a Factor that Deserves Further Research in Bolivian Viticulture: A Review. S. Afr. J. Enol. Vitic. 2021, 56, 201–212. [Google Scholar] [CrossRef]
Vineyard | Sampling Date | 100-Grape Weight (g) | Total Acidity (g Tartaric Acid/L) | pH | Sugar (Brix) | Malic Acid (g/L) | Tartaric Acid (g/L) | Catechins (mg/L) | Yeast Assimilable Nitrogen (mg/L) |
---|---|---|---|---|---|---|---|---|---|
Ftelos | 16 August 2022 | 226 1 ± 2.00 | 7.88 2 ± 0.03 | 3.01 1 ± 0.01 | 20.10 1 ± 0.05 | 1.38 2 ± 0.01 | 10.85 2 ± 0.05 | 12.00 2 ± 1.00 | 129.35 2 ± 0.35 |
22 August 2022 | 234 2 ± 1.80 | 7.70 1 ± 0.10 | 2.99 1 ± 0.01 | 21.90 2 ± 0.03 | 1.03 1 ± 0.02 | 8.76 1 ± 0.04 | 7.00 1 ± 0.01 | 87.50 1 ± 0.28 | |
Louros | 16 August 2022 | 219 2 ± 1.00 | 7.47 3 ± 0.06 | 2.94 1 ± 0.01 | 19.90 1 ± 0.04 | 1.16 4 ± 0.02 | 10.02 4 ± 0.03 | 12.00 2 ± 0.01 | 166.96 4 ± 0.26 |
21 August 2022 | 232 3 ± 0.87 | 7.40 3 ± 0.05 | 3.00 2 ± 0.01 | 21.83 2 ± 0.06 | 0.84 3 ± 0.01 | 7.36 1 ± 0.04 | 7.00 1 ± 1.00 | 73.57 3 ± 0.17 | |
25 August 2022 | 240 4 ± 2.65 | 6.60 2 ± 0.05 | 3.13 3 ± 0.02 | 21.80 2 ± 0.04 | 0.74 2 ± 0.01 | 9.16 3 ± 0.06 | 7.00 1 ± 0.01 | 57.26 2 ± 0.14 | |
31 August 2022 | 215 1 ± 1.00 | 6.15 1 ± 0.05 | 3.10 3 ± 0.05 | 22.20 3 ± 0.03 | 0.58 1 ± 0.01 | 8.82 2 ± 0.02 | 7.00 1 ± 0.01 | 55.42 1 ± 0.17 | |
Papas | 16 August 2022 | 209 1 ± 0.01 | 7.20 1 ± 0.10 | 2.95 1 ± 0.01 | 20.00 1 ± 0.20 | 1.22 2 ± 0.02 | 10.00 2 ± 0.05 | 11.00 2 ± 1.00 | 192.80 2 ± 0.15 |
21 August 2022 | 230 2 ± 1.00 | 7.60 2 ± 0.05 | 3.09 2 ± 0.01 | 21.70 2 ± 0.06 | 0.78 1 ± 0.01 | 7.92 1 ± 0.61 | 6.00 1 ± 0.01 | 106.13 1 ± 0.14 |
Vineyard | Altitude (m) | pH | Organic Substance (%) | Clay (%) | Phosphorus (ppm) | Potassium (ppm) |
---|---|---|---|---|---|---|
Louros | 250 | 6.96 ± 0.02 | 0.29 ± 0.01 | 8.10 ± 0.50 | 34.42 ± 1.05 | 141.71 ± 1.05 |
Ftelos | 200 | 7.04 ± 0.03 | 0.65 ± 0.02 | 7.29 ± 0.45 | 4.05 ± 0.30 | 232.82 ± 1.30 |
Papas | 290 | 6.83 ± 0.02 | 0.47 ± 0.02 | 7.80 ± 0.47 | 29.35 ± 0.80 | 185.76 ± 1.10 |
Residual Sugars (g/L) | Alcoholic Strength by Vol (%) | Total Acidity (g/L Tartaric Acid) | pH | Volatile Acidity (g/L Acetic Acid) | Density 20 °C (g/L) | Total Solid Residue (g/L) | |
---|---|---|---|---|---|---|---|
Louros | 0.49 ± 0.03 | 15.00 ± 0.05 | 7.88 ± 0.15 | 2.89 ± 0.05 | 0.56 ± 0.03 | 0.9887 ± 0.0001 | 24.40 ± 0.05 |
Ftelos | 1.21 ± 0.10 | 14.20 ± 0.10 | 8.07 ± 0.15 | 2.90 ± 0.03 | 0.41 ± 0.04 | 0.9896 ± 0.0002 | 23.80 ± 0.03 |
Papas | 0.12 ± 0.02 | 14.00 ± 0.08 | 7.57 ± 0.10 | 2.94 ± 0.05 | 0.44 ± 0.03 | 0.9890 ± 0.0001 | 24.90 ± 0.05 |
Volatile Compound | Ftelos (μg/L) | Louros (μg/L) | Papas (μg/L) | Threshold (μg/L) | Aroma Description |
---|---|---|---|---|---|
2-phenyl ethanol | 30,000 | 53,000 | 45,000 | 620 | Floral, rose with a hint of honey |
Guaiacol | <10 * | <10 * | <10 * | 9.5 | Phenol, wood |
2-methoxy-4methylphenol | <10 * | <10 * | <10 * | Bacon, clove | |
Hexanol | <10 * | <10 * | <10 * | 8.000 | Green, grassy |
Ethyl-2-methylbutyrate | <10 * | <10 * | <10 * | 18 | Strawberry, apple |
Ethyl phenol | <10 * | <10 * | <10 * | 440 | Spices, cloves, tobacco |
Ethyl butyrate | <10 * | <10 * | <10 * | 125 | Cherry, strawberry, apple, pineapple, sweet |
Ethyl caprylate | 289 | 266 | 247 | 150 | Pear, apple, pineapple |
Ethyl caproate | 975 | 885 | 886 | 100 | Pineapple, apple peel |
Ethyl cinnamate | <10 * | <10 * | <10 * | 1.1 | Flowers, red fruits |
Ethyl dodecanoate | <10 * | <10 * | <10 * | 1750 | Plum, grape |
Ethyl decanoate | 109 | 117 | 103 | 200 | Red fruits, grapes |
Ethyl isobutyrate | 127 | 112 | 163 | 10 | Sweet scent, strawberry, floral |
Ethyl isovalerate | <10 * | <10 * | <10 * | 3 | Yeast, fruit |
Ethyl-3-hydroxybutyrate | 979 | 881 | 873 | 21,000 | Fruity, green, apple peel |
2-phenylethyl acetate | 431 | 505 | 437 | 250 | Flower, rose |
Isoamyl acetate | 7986 | 8599 | 6533 | 30 | Banana, candy |
Isobutyl acetate | 206 | 208 | 196 | 1.600 | Fruit, apple, banana |
Hexyl-acetate | 557 | 475 | 512 | 670 | Apple, cherry, peach, flower |
Benzyl acetate | <10 * | <10 * | <10 * | Jasmine, apple | |
Eugenol | <10 * | <10 * | <10 * | 6 | Clove |
Thymol | <10 * | <10 * | <10 * | 50 | Thyme, oregano |
Geraniol | <10 * | <10 * | <10 * | 30 | Rose, citrus |
Linaool | 159 | 241 | 199 | 25 | Lemon, citron, bergamot |
B-ionone | <10 * | <10 * | <10 * | 4.3 | Violet, plum, raspberry |
Citral | <10 * | <10 * | <10 * | Lemon | |
Damasceone | <10 * | <10 * | <10 * | 0.05 | Cooked apple, quince, flowers |
Rose oxide | <10 * | <10 * | <10 * | 80–160 | Rose, lychee |
Decyl-aldehyde | <10 * | <10 * | <10 * | Orange peel, citrus fruit, flower | |
Ethyl vanillin | <10 * | <10 * | <10 * | 200 | Flower fragrance |
Isoeugenol | <10 * | <10 * | <10 * | Flower, aromatic vanilla |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karampatea, A.; Vrentzou, E.; Skendi, A.; Bouloumpasi, E. Effect of Vineyard Location on Assyrtiko Grape Ripening in Santorini and Its Wine’s Characteristics. Biol. Life Sci. Forum 2024, 40, 47. https://doi.org/10.3390/blsf2024040047
Karampatea A, Vrentzou E, Skendi A, Bouloumpasi E. Effect of Vineyard Location on Assyrtiko Grape Ripening in Santorini and Its Wine’s Characteristics. Biology and Life Sciences Forum. 2024; 40(1):47. https://doi.org/10.3390/blsf2024040047
Chicago/Turabian StyleKarampatea, Aikaterini, Eirini Vrentzou, Adriana Skendi, and Elisavet Bouloumpasi. 2024. "Effect of Vineyard Location on Assyrtiko Grape Ripening in Santorini and Its Wine’s Characteristics" Biology and Life Sciences Forum 40, no. 1: 47. https://doi.org/10.3390/blsf2024040047
APA StyleKarampatea, A., Vrentzou, E., Skendi, A., & Bouloumpasi, E. (2024). Effect of Vineyard Location on Assyrtiko Grape Ripening in Santorini and Its Wine’s Characteristics. Biology and Life Sciences Forum, 40(1), 47. https://doi.org/10.3390/blsf2024040047