Influence of Severe Drought on Leaf Response in ABA Contrasting Tomato Genotypes (Wild Type and flacca Mutant) †
Abstract
:1. Introduction
2. Experiments
2.1. Experiment
- Control group—plants were fully irrigated from the beginning to the end of the experiment (36% of volumetric water content);
- Severe drought—plants were fully irrigated to the phase of the 2nd flower truss, when severe drought treatment started (10–11% of volumetric water content) until the end of the experiment.
2.2. Physiological Parameters
2.3. Biochemical Analysis
3. Results
3.1. Physiological Parameters
3.1.1. Stomatal Conductance and Leaf Water Potential
3.1.2. Specific Leaf Area and Dry Matter Content
3.1.3. Chlorophyll Content
3.2. Biochemical Parameters
Vitamin C, Antioxidant Capacity, and ABA Content
4. Discussion
4.1. Physiological Processes
4.2. Biochemical and Metabolic Processes
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
Abbreviations
ABA | Abscisic acid |
FW | Fresh weight |
SLA | Specific leaf area |
ROS | Reactive oxygen species |
TEAC | Trolox equivalent antioxidant capacity |
References
- Kamanga, R.M.; Mbega, E.; Ndakidemi, P. Drought Tolerance Mechanisms in Plants: Physiological Responses Associated with Water Deficit Stress in Solanum lycopersicum. ACST 2018, 6, 362. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Z.J.; Andersen, M.N.; Hua, T. Tomato yield and water use efficiency—Coupling effects between growth stage specific soil water deficit. Acta Agric. Scand. 2015, 65, 460–469. [Google Scholar] [CrossRef]
- Patanè, C.; Saita, A. Biomass, fruit yield, water productivity and quality response of processing tomato to plant density and deficit irrigation under a semiarid Mediterranean climate. Crop Pasture Sci. 2015, 66, 224–234. [Google Scholar] [CrossRef]
- Muñoz, P.; Munné-Bosch, S. Photo-Oxidative Stress during Leaf, Flower and Fruit Development. Plant Physiol. 2018, 176, 1004–1014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sah, S.K.; Reddy, K.R.; Li, J. Abscisic Acid and Abiotic Stress Tolerance in Crop Plants. Front. Plant Sci. 2016, 7, 571. [Google Scholar] [CrossRef] [Green Version]
- Sagi, M.; Fluhr, R.; Lips, S. Aldehyde oxidase and xanthine dehydrogenase in a flacca tomato mutant with deficient abscisic acid and wilty phenotype. Plant Physiol. 1999, 120, 571–577. [Google Scholar] [CrossRef] [Green Version]
- Scholander, P.F.; Bradstreet, E.D.; Hemmingsen, E.A.; Hammel, H.T. Sap pressure in vascular plants: Negative hydrostatic pressure can be measured in plants. Science 1965, 148, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Hunt, R. Plant Growth Curves: The Functional Approach to Plant Growth Analysis; Cambridge University Press: London, UK, 1982. [Google Scholar]
- Stevens, R.; Buret, M.; Garchery, C.; Carretero, Y.; Causse, M. Technique for Rapid, Small-Scale Analysis of Vitamin C Levels in Fruit and Application to a Tomato Mutant Collection. J. Agric. Food Chem. 2006, 54, 6159–6165. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Asch, F. Laboratory Manual on Determination of Abscisic Acid by Indirect Enzyme Linked Immuno Sorbent Assay (ELISA); Technical Series 1-2000; The Royal Veterinary and Agricultural University: Copenhagen, Denmark, 2000; pp. 1–21. [Google Scholar]
- Borba, M.E.A.; Maciel, G.M.; Fraga Júnior, E.F.; Machado Júnior, C.S.; Marquez, G.R.; Silva, I.G.; Almeida, R.S. Gas exchanges and water use efficiency in the selection of tomato genotypes tolerant to water stress. Genet. Mol. Res. 2017, 16, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Calcagno, A.M.; Rivas, M.; Castrillo, M. Structural, physiological and metabolic integrated responses of two tomato (Solanum lycopersicum L.) cultivars during leaf rehydration. Aust. J. Crop Sci. 2011, 5, 695–701. [Google Scholar]
- Moles, T.M.; Mariotti, L.; De Pedro, L.F.; Guglielminetti, L.; Picciarelli, P.; Scartazza, A. Drought induced changes of leaf-to-root relationships in two tomato genotypes. Plant Physiol. Biochem. 2018, 128, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Nankishore, A.; Farrell, A.D. The response of contrasting tomato genotypes to combined heat and drought stress. J. Plant Physiol. 2016, 202, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Espinoza, V.A.; López-Climent, M.F.; Casaretto, J.A.; Gómez-Cadenas, A. Water Stress Responses of Tomato Mutants Impaired in Hormone Biosynthesis Reveal Abscisic Acid, Jasmonic Acid and Salicylic Acid Interactions. Front. Plant Sci. 2015, 6, 997. [Google Scholar] [CrossRef] [Green Version]
- Tamburino, R.; Vitale, M.; Ruggiero, A.; Sassi, M.; Sannino, L.; Arena, S.; Costa, A.; Batelli, G.; Zambrano, N.; Scaloni, A.; et al. Chloroplast proteome response to drought stress and recovery in tomato (Solanum lycopersicum L.). BMC Plant Biol. 2017, 7, 3–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rigano, M.M.; Arena, C.; Di Matteo, A.; Sellitto, S.; Frusciante, L.; Barone, A. Eco-physiological response to water stress of drought-tolerant and drought sensitive tomato genotypes. Plant Biosyst. 2016, 150, 682–691. [Google Scholar] [CrossRef] [Green Version]
- Dodd, I.C.; Theobald, J.C.; Richer, S.K.; Davies, W.J. Partial phenotypic reversion of ABA-deficient flacca tomato (Solanum lycopersicum) scions by a wild-type rootstock: Normalizing shoot ethylene relations promotes leaf area but does not diminish whole plant transpiration rate. J. Exp. Bot. 2009, 60, 4029–4039. [Google Scholar] [CrossRef]
- Nitsch, L.; Kohlen, W.; Oplaat, C.; Charnikhova, T.; Cristescu, S.; Michieli, P.; Wolters-Arts, M.; Bouwmeester, H.; Mariani, C.; Vriezen, W.H.; et al. ABA-deficiency results in reduced plant and fruit size in tomato. J. Plant Physiol. 2012, 169, 878–883. [Google Scholar] [CrossRef]
- Wahb-Allah, M.A.; Alsadon, A.A.; Ibrahim, A.A. Drought Tolerance of Several Tomato Genotypes under Greenhouse Conditions. World Appl. Sci. J. 2011, 15, 933–940. [Google Scholar]
- Al Hassan, M.; Martinez Fuertes, M.; Ramos Sanchez, F.J.; Vicente, O.; Boscaiu, M. Effects of Salt and Water Stress on Plant Growth and on Accumulation of Osmolytes and Antioxidant Compounds in Cherry Tomato. Not. Bot. Horti Agrobot. 2015, 43, 1–11. [Google Scholar] [CrossRef]
- Yuan, X.K.; Yang, Z.Q.; Li, Y.X.; Liu, Q.; Han, W. Effects of different levels of water stress on leaf photosynthetic characteristics and antioxidant enzyme activities of greenhouse tomato. Photosynthetica 2016, 54, 28–39. [Google Scholar] [CrossRef]
- Barry, C.S.; Aldridge, G.M.; Herzog, G.; Ma, Q.; McQuinn, R.P.; Hirschberg, J.; Giovannoni, J.J. Altered chloroplast development and delayed fruit ripening caused by mutations in a zinc metalloprotease at the lutescent2 locus of tomato. Plant Physiol. 2012, 159, 1086–1098. [Google Scholar] [CrossRef] [Green Version]
- Sivakumar, R.; Nandhitha, G.K.; Nithila, S. Impact of Drought on Chlorophyll, Soluble Protein, Abscisic Acid, Yield and Quality Characters of Contrasting Genotypes of Tomato (Solanum lycopersicum). Br. J. Appl. Sci. Technol. 2017, 21, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Barickman, T.C.; Kopsell, D.A.; Sams, C.E. Abscisic Acid Increases Carotenoid and Chlorophyll Concentrations in Leaves and Fruit of Two Tomato Genotypes. J. Am. Soc. Hortic. Sci. 2014, 139, 261–266. [Google Scholar] [CrossRef] [Green Version]
- Landi, S.; De Lillo, A.; Nurcato, R.; Grillo, S.; Esposito, S. In-field study on traditional Italian tomato landraces: The constitutive activation of the ROS scavenging machinery reduces effects of drought stress. Plant Physiol. Biochem. 2017, 118, 150–160. [Google Scholar] [CrossRef]
- Monteiro, C.C.; Rolao, M.B.; Franco, M.R.; Peters, L.P.; Cia, M.C.; Capaldi, F.R.; Carvalho, R.F.; Gratao, P.L.; Rossi, M.L.; Martinelli, A.P.; et al. Biochemical and histological characterization of tomato. An. Acad. Bras. Ciênc. 2012, 84, 571–585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ünyayar, S.; Çekıç, F.Ö. Changes in Antioxidative Enzymes of Young and Mature Leaves of Tomato Seedlings under Drought Stress. Turk. J. Biol. 2005, 29, 211–216. [Google Scholar]
- Milosavljević, A.; Prokić, L.; Marjanović, M.; Stikić, R.; Sabovljević, A. The effects of drought on the expression of TAO1, NCED and EIL1 genes and ABA content in tomato wild-type and flacca mutant. Arch. Biol. Sci. 2012, 64, 297–306. [Google Scholar] [CrossRef]
Stomatal Conductance (mmol m−2 s−1) | Leaf Water Potential (−MPa) | |||
---|---|---|---|---|
Genotype | Control | Drought | Control | Drought |
Ailsa Craig | 961.25 ± 7.66 | 160.37 ± 2.05 *** | −0.31 ± 0.01 | −1.22 ± 0.04 *** |
flacca | 1038.75 ± 7.66 | 396.87 ± 7.84 *** | −0.33 ± 0.01 | −1.55 ± 0.06 *** |
Specific Leaf Area—SLA (cm2/g) | Dry Matter Content (%) | |||
---|---|---|---|---|
Genotype | Control | Drought | Control | Drought |
Ailsa Craig | 158.83 ± 9.66 | 135.58 ± 10.12 *** | 9.93 ± 0.17 | 13.51 ± 0.33 *** |
flacca | 108.54 ± 3.71 | 78.84 ± 2.76 *** | 10.39 ± 0.19 | 15.53 ± 0.30 *** |
Chlorophyll Content (μg/cm2) | |||
---|---|---|---|
Genotype | Phase of Fruit Development | Control | Drought |
Ailsa Craig | Anthesis | 32.58 ± 0.87 | |
Mature green | 36.15 ± 0.92 | 33.90 ± 0.81 * | |
Turning phase | 39.70 ± 0.84 | 34.88 ± 0.71 * | |
flacca | Anthesis | 33.18 ± 0.70 | |
Mature green | 41.23 ± 0.93 | 35.14 ± 0.87 ** | |
Turning phase | 48.88 ± 0.63 | 39.49 ± 0.95 *** |
Vitamin C (mg/100 g FW) | Antioxidant Capacity (μmol TEAC/100 g FW) | ABA (ng/g FW) | ||||
---|---|---|---|---|---|---|
Genotype | Control | Drought | Control | Drought | Control | Drought |
Ailsa Craig | 70.53 ± 2.35 | 85.47 ± 2.30 *** | 79.66 ± 1.93 | 120.45 ± 1.60 *** | 387.93 ± 8.26 | 1326.99 ± 42.6 *** |
flacca | 55.39 ± 1.35 | 60.61 ± 1.57 | 81.96 ± 1.56 | 106.70 ± 2.11 *** | 243.36 ± 8.57 | 541.70 ± 17.87 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrović, I.; Jovanović, Z.; Stikić, R.; Marjanović, M.; Savić, S. Influence of Severe Drought on Leaf Response in ABA Contrasting Tomato Genotypes (Wild Type and flacca Mutant). Biol. Life Sci. Forum 2021, 4, 96. https://doi.org/10.3390/IECPS2020-08867
Petrović I, Jovanović Z, Stikić R, Marjanović M, Savić S. Influence of Severe Drought on Leaf Response in ABA Contrasting Tomato Genotypes (Wild Type and flacca Mutant). Biology and Life Sciences Forum. 2021; 4(1):96. https://doi.org/10.3390/IECPS2020-08867
Chicago/Turabian StylePetrović, Ivana, Zorica Jovanović, Radmila Stikić, Milena Marjanović, and Slađana Savić. 2021. "Influence of Severe Drought on Leaf Response in ABA Contrasting Tomato Genotypes (Wild Type and flacca Mutant)" Biology and Life Sciences Forum 4, no. 1: 96. https://doi.org/10.3390/IECPS2020-08867
APA StylePetrović, I., Jovanović, Z., Stikić, R., Marjanović, M., & Savić, S. (2021). Influence of Severe Drought on Leaf Response in ABA Contrasting Tomato Genotypes (Wild Type and flacca Mutant). Biology and Life Sciences Forum, 4(1), 96. https://doi.org/10.3390/IECPS2020-08867