Ectopic Lateral Root Branching in Fe-Deprived Maize Plants: Searching for the Genes Underpinning the Phenotype †
Abstract
:1. Introduction
2. Methods
2.1. Plant Growth Conditions and Treatments
2.2. Samplings and Observations
2.3. In Silico Analysis
2.4. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PR | Primary embryonic roots |
SR | Seminal embryonic roots |
CR | Crown roots |
BTR | Branching at the terminal 5 cm of root |
lincRNA | Long intergenic non-coding RNA |
MGDB | Maize Genetics and Genomic Database |
QTL | Quantitative trait locus |
References
- Guerinot, M.L.; Yi, Y. Iron: Nutritious, noxious, and not readily available. Plant Physiol. 1994, 104, 815–820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramos, A.C.; Martins, M.A.; Okorokova-Façanha, A.L.; Olivares, F.L.; Okorokov, L.A.; Sepúlveda, N.; Feijó, J.Á.; Façanha, A.R. Arbuscular mycorrhizal fungi induce differential activation of the plasma membrane and vacuolar H+ pumps in maize roots. Mycorrhiza 2009, 19, 69–80. [Google Scholar] [CrossRef] [PubMed]
- Cesco, S.; Neumann, G.; Tomasi, N.; Pinton, R.; Weisskopf, L. Release of plant-borne flavonoids into the rhizosphere and their role in plant nutrition. Plant Soil 2010, 329, 1–25. [Google Scholar] [CrossRef]
- Nozoye, T.; Nagasaka, S.; Kobayashi, T.; Takahashi, M.; Sato, Y.; Sato, Y.; Uozumi, N.; Nakanishi, H.; Nishizawa, N.K. Phytosiderophore efflux transporters are crucial for iron acquisition in graminaceous plants. J. Biol. Chem. 2011, 286, 5446–5454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darbani, B.; Briat, J.-F.; Holm, P.B.; Husted, S.; Noeparvar, S.; Borg, S. Dissecting plant iron homeostasis under short and long-term iron fluctuations. Biotechnol. Adv. 2013, 31, 1292–1307. [Google Scholar] [CrossRef] [PubMed]
- Benke, A.; Urbany, C.; Marsian, J.; Shi, R.; von Wirén, N.; Stich, B. The genetic basis of natural variation for iron homeostasis in the maize IBM population. BMC Plant Biol. 2014, 14, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zanin, L.; Venuti, S.; Zamboni, A.; Varanini, Z.; Tomasi, N.; Pinton, R. Transcriptional and physiological analyses of Fe deficiency response in maize reveal the presence of Strategy I components and Fe/P interactions. BMC Genom. 2017, 18, 154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Portwood, J.L., II; Woodhouse, M.R.; Cannon, E.K.; Gardiner, J.M.; Harper, L.C.; Schaeffer, M.L.; Walsh, J.R.; Sen, T.Z.; Cho, K.T.; Schott, D.A.; et al. MaizeGDB 2018: The maize multi-genome genetics and genomics database. Nucleic Acids Res. 2019, 47, D1146–D1154. [Google Scholar] [CrossRef] [PubMed]
Control | -Fe | |||||
---|---|---|---|---|---|---|
Days | PR | SR | CR | PR | SR | CR |
7 | 11.23 ± 2.59 | 8.77 ± 1.84 | 0.00 | 11.23 ± 2.59 | 8.77 ± 1.84 | 0.00 |
14 | 33.27 ± 5.12 | 34.70 ± 4.63 | 15.27 ± 2.15 | 29.07 ± 4.71 | 23.17 ± 3.28 * | 10.67 ± 1.25 * |
21 | 60.33 ± 8.48 | 56.57 ± 6.91 | 38.67 ± 5.33 | 33.53 ± 5.79 * | 22.47 ± 4.35 * | 14.47 ± 2.55 * |
Control | -Fe | |||||
---|---|---|---|---|---|---|
Days | PR | SR | CR | PR | SR | CR |
7 | 40.36 ± 5.18 | 0.00 | 0.00 | 40.36 ± 5.18 | 0.00 | 0.00 |
14 | 80.46 ± 4.85 | 77.43 ± 3.26 | 44.32 ± 4.72 | 85.09 ± 4.92 | 83.74 ± 6.77 | 66.25 ± 5.39 * |
21 | 86.52 ± 3.59 | 82.14 ± 4.28 | 77.67 ± 5.63 | 96.72 ± 3.27 * | 93.62 ± 4.30 * | 93.55 ± 5.66 * |
Control | -Fe | |||||
---|---|---|---|---|---|---|
Days | PR | SR | CR | PR | SR | CR |
7 | 6.70 ± 0.94 | 0.00 | 0.00 | 6.70 ± 0.94 | 0.00 | 0.00 |
14 | 6.50 ± 0.91 | 7.83 ± 0.77 | 8.50 ± 0.74 | 4.33 ± 0.57 * | 3.77 ± 0.61 * | 3.60 ± 0.44 * |
21 | 8.20 ± 1.03 | 10.10 ± 1.21 | 7.77 ± 1.16 | 1.10 ± 0.28 * | 1.03 ± 0.14 * | 0.77 ± 0.18 * |
MGDB Gene ID | MGDB Gene/Protein Information |
---|---|
Zm00001d033374 | TIDP3143, ubiquitin-conjugating enzyme |
Zm00001d033375 | cl27571_1, FMP27, GFWDK domain protein |
Zm00001d022967 | lincRNA |
Zm00001d033377 | 9-cis-epoxycarotenoid dioxygenase (abscisic acid biosynthesis) |
Zm00001d022968 | lincRNA |
Zm00001d033378 | hb33, homeobox-transcription factor 33 |
Zm00001d033379 | kip1, knotted interacting protein1 transcription factor |
Zm00001d033380 | tetratricopeptide-like helical domain superfamily protein |
Zm00001d033382 | - |
Zm00001d033383 | thic1, hydroxymethylpyrimidine phosphate synthase1 (thiamine biosynthesis) |
Zm00001d033384 | ribosomal protein L5 domain family |
Zm00001d033385 | UDP-d-galacturonate:1,4-a-poly-d-galacturonate 4-a-d-galacturonosyltransferase (homogalacturonan biosynthesis) |
Zm00001d033386 | zinc finger, RING/FYVE/PHD-type domain containing protein |
Zm00001d033388 | tetratricopeptide-like helical domain superfamily protein |
Zm00001d033389 | vq10, VQ motif-transcription factor10 |
Zm00001d022969 | lincRNA |
Zm00001d033390 | basic-leucine zipper domain transcription factor |
Zm00001d033391 | - |
Zm00001d033392 | - |
Zm00001d033393 | - |
Zm00001d033394 | - |
Zm00001d033395 | - |
Zm00001d022970 | lincRNA |
Zm00001d033396 | grftf4, Growth-Regulating Factor (GRF)—transcription factor 4 |
Zm00001d033397 | cl9255_1, CNNM transmembrane domain protein |
Zm00001d033399 | - |
Zm00001d033400 | metal-dependent protein hydrolase domain |
Zm00001d033401 | osca7, hyperosmolality-gated calcium-permeable channels7 |
Zm00001d033402 | - |
Zm00001d033403 | tRNA |
Zm00001d033404 | hb110, homeobox-transcription factor 110 |
Zm00001d033405 | TIDP3692, pyruvate kinase |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ventouris, Y.E.; Protopappa, S.-T.P.; Nikolopoulou, A.-E.; Bouranis, D.L.; Chorianopoulou, S.N. Ectopic Lateral Root Branching in Fe-Deprived Maize Plants: Searching for the Genes Underpinning the Phenotype. Biol. Life Sci. Forum 2021, 4, 7. https://doi.org/10.3390/IECPS2020-08679
Ventouris YE, Protopappa S-TP, Nikolopoulou A-E, Bouranis DL, Chorianopoulou SN. Ectopic Lateral Root Branching in Fe-Deprived Maize Plants: Searching for the Genes Underpinning the Phenotype. Biology and Life Sciences Forum. 2021; 4(1):7. https://doi.org/10.3390/IECPS2020-08679
Chicago/Turabian StyleVentouris, Yannis E., Sotiria-Theoklitia P. Protopappa, Aimilia-Eleni Nikolopoulou, Dimitris L. Bouranis, and Styliani N. Chorianopoulou. 2021. "Ectopic Lateral Root Branching in Fe-Deprived Maize Plants: Searching for the Genes Underpinning the Phenotype" Biology and Life Sciences Forum 4, no. 1: 7. https://doi.org/10.3390/IECPS2020-08679
APA StyleVentouris, Y. E., Protopappa, S. -T. P., Nikolopoulou, A. -E., Bouranis, D. L., & Chorianopoulou, S. N. (2021). Ectopic Lateral Root Branching in Fe-Deprived Maize Plants: Searching for the Genes Underpinning the Phenotype. Biology and Life Sciences Forum, 4(1), 7. https://doi.org/10.3390/IECPS2020-08679