Interaction between Soil Drouhgt and Allelopathic Factor on Wheat Seedlings Performance †
Abstract
:1. Introduction
2. Experiments
2.1. Seed Materials
2.2. Experimental Setup and Cultivation Conditions
2.3. Measurements
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Institutional Review Board Statement
Informed Consent Statement
Abbreviations
AA | Ascorbic acid |
CA | Cinnamic acid |
SA | Salicylic acid |
CAT | Catalase activity |
RWC | relative water content |
WD | water deficit |
d.w. | dry weight |
PM | priming mixture |
C% | organic carbon |
ANOVA | analysis of variance |
LSD | least significant difference |
References
- Rehman, S.; Harris, P.J.C.; Ashraf, M. Stress environments and their impact on crop production. In Abiotic Stresses: Plant Resistance through Breeding and Molecular Approaches; Ashraf, M., Harris, P.J.C., Eds.; Haworth Press: New York, NY, USA, 2005; pp. 3–18. [Google Scholar]
- Vyshnivskiy, P.S. Multiplicity of manifestation of adverse weather conditions in the forest steppe zone in growing oilseeds cabbage. In Proceedings of the National Scientific Center “Institute of Agriculture NAAS”; Tvory: Kyiv, Ukraine, 2013; pp. 102–108. [Google Scholar]
- Didyk, N.P.; Blum, O.B. Natural antioxidants of plant origin against ozone damage of sensitive crops. ActaPhysiol. Plant. 2011, 33, 25–34. [Google Scholar] [CrossRef]
- Didyk, N.P.; Rositska, N.V.; Berebenchuk, L.D. The effect of rutin, ascorbic and salicylic acids on the functional state of wheat plants under drought conditions. Physiol. Biochem. Cultiv. Plants 2011, 43, 453–458. [Google Scholar]
- Didyk, N.P. Seed pre-treatments improve resistance to allelopathic stress. Fiziol. Rast. Genet. 2017, 49, 339–346. [Google Scholar] [CrossRef] [Green Version]
- Didyk, N.P.; Zakrasov, O.V.; Rositska, N.V.; Kharitonova, I.P. Acclimation of corn plants to drought stress after a pre-treatment with allelochemicals. Fiziol. Rast. Genet. 2014, 46, 449–454. [Google Scholar]
- Zhang, Y. Biological Role of Ascorbate in Plants. In AscorbicAcidinPlants: Biosynthesis, Regulationand Enhancement; Springer: New York, NY, USA, 2013; pp. 7–33. [Google Scholar] [CrossRef]
- Kolupaev, Y.E.; Yastreb, T.O. Stress-protective effects of salicylic acid and its structural analogues. Physiol. Biochem. Cultiv. Plants 2013, 45, 113–126. [Google Scholar]
- Hara, M.; Furukawa, J.; Sato, A.; Mizoguchi, T.; Miura, K. Abiotic Stress and Role of Salicylic Acid in Plants. In Abiotic Stress Responses in Plants. Metabolism, Productivity and Sustainability; Ahmad, P., Prasad, M.N.V., Eds.; Springer: New York, NY, USA, 2012; pp. 235–251. [Google Scholar]
- Rivas-San, V.M.; Plasencia, J. Salicylic acid beyond defense: Its role in plant growth and development. J. Exp. Bot. 2011, 62, 3321–3338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.-H.; Wang, Q.; Ruan, X.; Pan, C.-D.; Jiang, D.-A. Phenolics and Plant Allelopathy. Molecules 2010, 15, 8933–8952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lutts, S.; Benincasa, P.; Wojtyla, L.; Kubala, S.; Pace, R.; Lechowska, K.; Quinet, M.; Garnczarska, M. Seed Priming: New Comprehensive Approaches for an Old Empirical Technique. In New Challenges in Seed Biology—Basic and Translational Research Driving Seed Technology; Araujo, S., Balestrazzi, A., Eds.; InTech: London, UK, 2016; pp. 1–49. [Google Scholar]
- Grigoryuk, I.A.; Tkachev, V.I.; Savinski, S.V.; Musiyenko, N.N. Modern Methods of Investigations and Assessment of Drought and Heat Tolerance in Plants. Methodic Guide; Nauk. Svit: Kyiv, Ukraine, 2003; 139p. [Google Scholar]
- Pleshkov, B.P. Practical Work on Plant Biochemistry; Agropromizdat: Moscow, Russia, 1985; 255p. [Google Scholar]
- Komarov, M.N.; Nikolaev, L.A.; Regir, V.G.; Tesov, L.S.; Kharitonova, N.P.; Shatokhina, R.K. (Eds.) Phytochemical analysis of medicinal plants. In Methodical Guide for Laboratory Works; CPHPA: Saint Petersburg, Russia, 1998; pp. 30–35. [Google Scholar]
- Grodzinski, A.M.; Kostroma, E.Ю.; Shrol, T.S.; Khokhlova, I.G. Methods of direct bioassay of soil and metabolites of microorganisms. In Allelopathy and Plant Productivity; Grodzinski, A.M., Golovko, E.A., Derevianko, V.A., Matveev, Y.V., Naumov, G.F., Prutenska, N.I., Yurchak, L.D., Eds.; Naukova Dumka: Kyiv, Ukraine, 1990; pp. 121–124. [Google Scholar]
- Grodzinsky, A.M. Plant Allelopathy and Soil Sickness: Selected Works; Naukova Dumka: Kyiv, Ukraine, 1991; 432p. [Google Scholar]
- Rinkis, G.Y.; Nollendorf, V.F. Macro and Micronutrients in Balanced Nutrition of Plants; Zinatne: Riga, Latvia, 1982; 202p. [Google Scholar]
- Antomonov, M.Y. Mathematical Processing and Analysis of Medical and Biological Data; Publishing House “Maly Druk”: Kyiv, Ukraine, 2006; 558p. [Google Scholar]
- Alexieva, V.; Ivanov, S.; Sergiev, I.; Karanov, E. Interaction between stresses. Bulg. J. Plant Physiol. 2003, 29, 1–17. [Google Scholar]
- Barkosky, R.R.; Einhellig, F.A. Allelopathic interference of plant-water relationships. Bot. Bull. Acad. Sin. 2003, 44, 53–58. [Google Scholar] [CrossRef]
- Kolupaev, Y.Y.; Obozny, O.I. Active forms of oxygen and antioxidant system at cross-adaptation of plants to the action of abiotic stressors. Bull. Kharkiv Natl. Agrar. Univ. Ser. Biol. 2013, 3, 18–31. [Google Scholar]
- Romero-Romero, T.; Sánchez-Nieto, S.; SanJuan-Badillo, A.; Cruz-Ortega, R. Comparative effects of allelochemical and water stress in roots of Lycopersicon esculentum Mill. (Solanaceae). Plant Sci. 2005, 168, 1059–1066. [Google Scholar] [CrossRef]
- Weir, T.L.; Park, S.W.; Vivanco, J.M. Biochemical and physiological mechanisms mediated by allelochemicals. Curr. Plant Biol. 2004, 7, 472–479. [Google Scholar] [CrossRef] [PubMed]
- Blum, U.; Gerig, T.M. Relationships between phenolic acid concentrations, transpiration, water utilization, leaf area expansion, and uptake of phenolic acids: Nutrient culture studies. J. Chem. Ecol. 2005, 31, 1907–1932. [Google Scholar] [CrossRef] [PubMed]
- Mierziak, J.; Kostyn, K.; Kulma, A. Flavonoids as Important Molecules of Plant Interactions with the Environment. Molecules 2014, 19, 16240–16265. [Google Scholar] [CrossRef] [PubMed]
- Fragasso, M.; Iannucci, A.; Papa, R. Durum wheat and allelopathy: Toward wheat breeding for natural weed management. Front. Plant Sci. 2013, 4, 375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaimenko, N.V.; Pavliuchenko, N.A.; Ellanska, N.E.; Kharytonova, I.P. The effect of drought on allelopathic, biochemical, microbiological characteristics of the system plant-soil-microorganisms. Bull. Kharkiv Natl. Agric. Univ. Ser. Biol. 2014, 286–294. [Google Scholar]
- Inderjit Weiner, J. Plant allelochemical interference or soil chemical ecology? Perspect. Plant Ecol. Evol. Syst. 2003, 4, 3–12. [Google Scholar] [CrossRef] [Green Version]
Soil Moisture, % | PM Concent-Ration, M | Germi-Nation, % | Shoot Height, mm | Leaf Area, cm2 | D. w., mg | RWC, % | WD, % | CA, mM H2O2/min × g d.w. | Flavo-Noids, % to d.w. | |
---|---|---|---|---|---|---|---|---|---|---|
Roots | Shoots | |||||||||
20 | 0 | 50.1 | 119.8 | 2.9 | 3.4 | 6 | 80.1 | 23.1 | 7.5 | 0.51 |
20 | 10−5 | 53.2 | 148.8 | 4.5 | 8.4 | 7.2 | 85.4 | 15.2 | 9.6 | 0.67 |
20 | 10−4 | 67.1 | 153.1 | 4.7 | 8.5 | 7.9 | 89.2 | 9.3 | 9.6 | 0.78 |
20 | 10−3 | 67.1 | 152.1 | 4.8 | 8.5 | 7.3 | 87.3 | 11.1 | 8.9 | 0.86 |
40 | 0 | 60.3 | 194.2 | 7.8 | 7.6 | 9.3 | 91.2 | 7.3 | 8.3 | 0.79 |
40 | 10−5 | 73.2 | 197.6 | 8.2 | 7.3 | 14.6 | 92.5 | 3.2 | 7.2 | 1.07 |
40 | 10−4 | 75.3 | 209.4 | 7.8 | 8.6 | 14.9 | 91.7 | 4.1 | 7.8 | 0.89 |
40 | 10−3 | 72.6 | 220.3 | 8.4 | 7.6 | 14.5 | 91.9 | 1.6 | 7.5 | 0.97 |
60 | 0 | 72.5 | 210.1 | 7.9 | 6.3 | 13.1 | 91.6 | 3.1 | 5.5 | 0.68 |
60 | 10−5 | 78.4 | 216.3 | 8.8 | 8.4 | 13.9 | 91.7 | 2.1 | 5.3 | 0.75 |
60 | 10−4 | 80.1 | 203.8 | 7.9 | 7.4 | 17.5 | 91.6 | 1.9 | 5.5 | 0.73 |
60 | 10−3 | 75.1 | 203.2 | 7.8 | 7.3 | 18.1 | 91.8 | 2.8 | 6.2 | 0.74 |
LSD | 1.1 | 4.1 | 0.3 | 5.9 | 6.8 | 1.4 | 6.1 | 0.8 | 0.1 | |
F1 | 2.47 | 2.36 | 3.23 | 2.42 | 2.24 | 2.70 | 8.50 | 2.70 | 16.95 | |
P1 | 0.05 | 0.08 | 0.03 | 0.05 | 0.07 | 0.03 | 0.00 | 0.03 | 0.00 | |
F2 | 2.90 | 4.80 | 5.55 | 2.63 | 4.68 | 5.52 | 17.21 | 3.10 | 20.77 | |
P2 | 0.07 | 0.01 | 0.01 | 0.08 | 0.01 | 0.01 | 0.00 | 0.06 | 0.00 |
Soil Moisture, % | PM Concentration, M | Allelopathic Activity, % to Control | Soil pH, Carbon (%) and Macronutrients, mg/L | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Water Extracts | Soil | C, % | pH | Mn | S | Fe | Mg | Ca | K | P | NO3 | NH4 | |||
Roots | Shoots | ||||||||||||||
20 | 0 | 93.6 | 93.6 | 158 | 6.2 | 7.7 | 100 | 200 | 1250 | 132 | 6236 | 214.5 | 164 | 23 | 7.7 |
20 | 10−5 | 88.0 | 49.6 | 127 | 6.2 | 7.7 | 100 | 200 | 1250 | 132 | 6331 | 205.2 | 164 | 15 | 10 |
20 | 10−4 | 88.7 | 48.0 | 122 | 6.6 | 7.8 | 110 | 200 | 1150 | 132 | 6831 | 205.2 | 164 | 15 | 7.7 |
20 | 10−3 | 80.7 | 48.0 | 128 | 6.2 | 7.8 | 100 | 200 | 1150 | 132 | 5664 | 205.2 | 164 | 15 | 10 |
40 | 0 | 64.5 | 60.1 | 112 | 3.9 | 7.8 | 100 | 200 | 1250 | 142 | 5998 | 223.8 | 109 | 18 | 10 |
40 | 10−5 | 60.8 | 56.4 | 117 | 3.6 | 7.7 | 100 | 200 | 1250 | 132 | 5664 | 223.8 | 109 | 9.5 | 10 |
40 | 10−4 | 61.2 | 54.7 | 113 | 3.9 | 7.8 | 100 | 200 | 1150 | 132 | 5831 | 224.5 | 112 | 11 | 10 |
40 | 10−3 | 60.2 | 51.8 | 114 | 4.2 | 7.7 | 100 | 200 | 1200 | 122 | 5998 | 223.8 | 109 | 11 | 8.2 |
60 | 0 | 64.3 | 63.1 | 110 | 3.2 | 7.8 | 100 | 200 | 1000 | 131 | 5664 | 186.6 | 109 | 18 | 10 |
60 | 10−5 | 63.2 | 55.7 | 97 | 2.6 | 7.6 | 80 | 200 | 750 | 122 | 5664 | 214.5 | 109 | 8.5 | 7.9 |
60 | 10−4 | 62.3 | 49.8 | 93 | 2.1 | 7.7 | 80 | 200 | 750 | 132 | 6164 | 223.8 | 110 | 7.5 | 7.9 |
60 | 10−3 | 58.5 | 45.8 | 94 | 2.6 | 7.7 | 120 | 200 | 750 | 131 | 6831 | 214.5 | 109 | 8.0 | 10 |
LSD | 2.2 | 2.3 | 2.6 | 0.1 | 0.1 | 8.9 | 8.3 | 6.9 | 4.4 | 4.4 | 7.2 | 3.8 | 2.2 | 0.8 | |
F1 | 3.5 | 2.31 | 3.32 | 1.5 | 0.1 | 1.7 | 0.9 | 0.24 | 4.1 | 2.78 | 0.08 | 0.6 | 4.6 | 0.9 | |
P1 | 0.02 | 0.10 | 0.02 | 0.2 | 1.0 | 0.2 | 0.5 | 0.86 | 0.1 | 0.08 | 0.96 | 0.61 | 0.1 | 0.5 | |
F2 | 19.8 | 0.38 | 42.7 | 34 | 0.2 | 1.5 | 0.6 | 0.18 | 0.2 | 0.08 | 0.21 | 0.84 | 8.6 | 0.8 | |
P2 | 0.00 | 0.68 | 0.00 | 0.0 | 0.9 | 0.2 | 0.7 | 0.88 | 0.9 | 0.98 | 0.89 | 0.5 | 0.1 | 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Didyk, N.P.; Rositska, N.V.; Ivanytska, B.O.; Zaimenko, N.V. Interaction between Soil Drouhgt and Allelopathic Factor on Wheat Seedlings Performance. Biol. Life Sci. Forum 2021, 4, 59. https://doi.org/10.3390/IECPS2020-08732
Didyk NP, Rositska NV, Ivanytska BO, Zaimenko NV. Interaction between Soil Drouhgt and Allelopathic Factor on Wheat Seedlings Performance. Biology and Life Sciences Forum. 2021; 4(1):59. https://doi.org/10.3390/IECPS2020-08732
Chicago/Turabian StyleDidyk, Nataliya P., Nadia V. Rositska, Bogdana O. Ivanytska, and Nataliya V. Zaimenko. 2021. "Interaction between Soil Drouhgt and Allelopathic Factor on Wheat Seedlings Performance" Biology and Life Sciences Forum 4, no. 1: 59. https://doi.org/10.3390/IECPS2020-08732
APA StyleDidyk, N. P., Rositska, N. V., Ivanytska, B. O., & Zaimenko, N. V. (2021). Interaction between Soil Drouhgt and Allelopathic Factor on Wheat Seedlings Performance. Biology and Life Sciences Forum, 4(1), 59. https://doi.org/10.3390/IECPS2020-08732