Enhanced Biohydrogen Production from Food Waste via Separate Hydrolysis and Fermentation: A Sustainable Approach †
Abstract
:1. Introduction
2. Agri-Food Waste as a Resource
3. Separate Hydrolysis and Fermentation Approach
4. Optimization of Operating Conditions
5. The Perspective Role of Computational Approaches in Advancing Biohydrogen Production
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ottomano Palmisano, G.; Bottalico, F.; El Bilali, H.; Cardone, G.; Capone, R. Food Losses and Waste in the Context of Sustainable Food and Nutrition Security. In Food Security and Nutrition; Galanakis, C.M., Ed.; Academic Press: Cambridge, MA, USA, 2021; pp. 235–255. ISBN 978-0-12-820521-1. [Google Scholar]
- Kumar, L.; Chhogyel, N.; Gopalakrishnan, T.; Hasan, M.K.; Jayasinghe, S.L.; Kariyawasam, C.S.; Kogo, B.K.; Ratnayake, S. Climate Change and Future of Agri-Food Production. In Future Foods; Bhat, R., Ed.; Academic Press: Cambridge, MA, USA, 2022; pp. 49–79. ISBN 978-0-323-91001-9. [Google Scholar]
- Hoehn, D.; Vázquez-Rowe, I.; Kahhat, R.; Margallo, M.; Laso, J.; Fernández-Ríos, A.; Ruiz-Salmón, I.; Aldaco, R. A Critical Review on Food Loss and Waste Quantification Approaches: Is There a Need to Develop Alternatives beyond the Currently Widespread Pathways? Resour. Conserv. Recycl. 2023, 188, 106671. [Google Scholar] [CrossRef]
- Cheng, S.Y.; Tan, X.; Show, P.L.; Rambabu, K.; Banat, F.; Veeramuthu, A.; Lau, B.F.; Ng, E.P.; Ling, T.C. Incorporating Biowaste into Circular Bioeconomy: A Critical Review of Current Trend and Scaling up Feasibility. Environ. Technol. Innov. 2020, 19, 101034. [Google Scholar] [CrossRef]
- De Laurentiis, V.; Corrado, S.; Sala, S. Quantifying Household Waste of Fresh Fruit and Vegetables in the EU. Waste Manag. 2018, 77, 238–251. [Google Scholar] [CrossRef] [PubMed]
- Filimonau, V.; Ermolaev, V.A. A Sleeping Giant? Food Waste in the Foodservice Sector of Russia. J. Clean. Prod. 2021, 297, 126705. [Google Scholar] [CrossRef]
- Facchini, F.; Silvestri, B.; Digiesi, S.; Lucchese, A. Agri-Food Loss and Waste Management: Win-Win Strategies for Edible Discarded Fruits and Vegetables Sustainable Reuse. Innov. Food Sci. Emerg. Technol. 2023, 83, 103235. [Google Scholar] [CrossRef]
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2022: Repurposing Food and Agricultural Policies to Make Healthy Diets More Affordable; The State of Food Security and Nutrition in the World (SOFI); FAO; IFAD; UNICEF; WFP; WHO: Rome, Italy, 2022; ISBN 978-92-5-136499-4. [Google Scholar]
- UNEP. United Nations Environment Programme Food Waste Index Report 2021; UNEP: Nairobi, Kenya, 2021; ISBN 978-92-807-3868-1. [Google Scholar]
- Mak, T.M.W.; Xiong, X.; Tsang, D.C.W.; Yu, I.K.M.; Poon, C.S. Sustainable Food Waste Management towards Circular Bioeconomy: Policy Review, Limitations and Opportunities. Bioresour. Technol. 2020, 297, 122497. [Google Scholar] [CrossRef] [PubMed]
- Lahiri, A.; Daniel, S.; Kanthapazham, R.; Vanaraj, R.; Thambidurai, A.; Peter, L.S. A Critical Review on Food Waste Management for the Production of Materials and Biofuel. J. Hazard. Mater. Adv. 2023, 10, 100266. [Google Scholar] [CrossRef]
- Sampath, P.; Brijesh; Reddy, K.R.; Reddy, C.V.; Shetti, N.P.; Kulkarni, R.V.; Raghu, A.V. Biohydrogen Production from Organic Waste—A Review. Chem. Eng. Technol. 2020, 43, 1240–1248. [Google Scholar] [CrossRef]
- El Bari, H.; Lahboubi, N.; Habchi, S.; Rachidi, S.; Bayssi, O.; Nabil, N.; Mortezaei, Y.; Villa, R. Biohydrogen Production from Fermentation of Organic Waste, Storage and Applications. Clean. Waste Syst. 2022, 3, 100043. [Google Scholar] [CrossRef]
- Tsegaye, B.; Abolore, R.; Arora, A.; Jaiswal, S.; Jaiswal, A.K. Biohydrogen Production from Agro-Industry Waste (Green Hydrogen): Current and Future Outlooks. In Value-Addition in Agri-Food Industry Waste Through Enzyme Technology; Kuddus, M., Ramteke, P., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 329–344. ISBN 978-0-323-89928-4. [Google Scholar]
- Rafieenia, R.; Lavagnolo, M.C.; Pivato, A. Pre-Treatment Technologies for Dark Fermentative Hydrogen Production: Current Advances and Future Directions. Waste Manag. 2018, 71, 734–748. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, T.; Mohan, S.V. Bio-Waste to Hydrogen Production Technologies. In Advanced Biofuel Technologies; Tuli, D., Kasture, S., Kuila, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 389–407. ISBN 978-0-323-88427-3. [Google Scholar]
- Rai, P.K.; Singh, S.P. Integrated Dark- and Photo-Fermentation: Recent Advances and Provisions for Improvement. Int. J. Hydrogen Energy 2016, 41, 19957–19971. [Google Scholar] [CrossRef]
- Lee, D.-H. Biohydrogen Yield Efficiency and the Benefits of Dark, Photo and Dark-Photo Fermentative Production Technology in Circular Asian Economies. Int. J. Hydrogen Energy 2021, 46, 13908–13922. [Google Scholar] [CrossRef]
- Pandey, B.K.; Mishra, S.; Dhar, R.; Srivastava, R. Biological Hydrogen Production Driven by Photo-Fermentation Processes. In Solar-Driven Green Hydrogen Generation and Storage; Srivastava, R., Chattopadhyay, J., Santos, D.M.F., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 223–235. ISBN 978-0-323-99580-1. [Google Scholar]
- Dinesh, G.H.; Nguyen, D.D.; Ravindran, B.; Chang, S.W.; Vo, D.-V.N.; Bach, Q.-V.; Tran, H.N.; Basu, M.J.; Mohanrasu, K.; Murugan, R.S.; et al. Simultaneous Biohydrogen (H2) and Bioplastic (Poly-β-Hydroxybutyrate-PHB) Productions under Dark, Photo, and Subsequent Dark and Photo Fermentation Utilizing Various Wastes. Int. J. Hydrogen Energy 2020, 45, 5840–5853. [Google Scholar] [CrossRef]
- Ramakodi, M.P. Computational Biology and Genomics Tools for Biohydrogen Research. In Biohydrogen, 2nd ed.; Pandey, A., Mohan, S.V., Chang, J.-S., Hallenbeck, P.C., Larroche, C., Eds.; Biomass, Biofuels, Biochemicals; Elsevier: Amsterdam, The Netherlands, 2019; pp. 435–444. ISBN 978-0-444-64203-5. [Google Scholar]
- Chezeau, B.; Vial, C. Modeling and Simulation of the Biohydrogen Production Processes. In Biohydrogen; Pandey, A., Mohan, S.V., Chang, J.-S., Hallenbeck, P.C., Larroche, C., Eds.; Biomass, Biofuels, Biochemicals; Elsevier: Amsterdam, The Netherlands, 2019; pp. 445–483. ISBN 978-0-444-64203-5. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tamaian, R. Enhanced Biohydrogen Production from Food Waste via Separate Hydrolysis and Fermentation: A Sustainable Approach. Biol. Life Sci. Forum 2024, 31, 14. https://doi.org/10.3390/ECM2023-16451
Tamaian R. Enhanced Biohydrogen Production from Food Waste via Separate Hydrolysis and Fermentation: A Sustainable Approach. Biology and Life Sciences Forum. 2024; 31(1):14. https://doi.org/10.3390/ECM2023-16451
Chicago/Turabian StyleTamaian, Radu. 2024. "Enhanced Biohydrogen Production from Food Waste via Separate Hydrolysis and Fermentation: A Sustainable Approach" Biology and Life Sciences Forum 31, no. 1: 14. https://doi.org/10.3390/ECM2023-16451
APA StyleTamaian, R. (2024). Enhanced Biohydrogen Production from Food Waste via Separate Hydrolysis and Fermentation: A Sustainable Approach. Biology and Life Sciences Forum, 31(1), 14. https://doi.org/10.3390/ECM2023-16451