Cropping System and Nitrogen Supply Interfere in Sustainability of Maize Production in the Dry Season †
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hufnagel, J.; Reckling, M.; Ewert, F. Diverse approaches to crop diversification in agricultural research. A review. Agron. Sustain. Dev. 2020, 40, 1–17. [Google Scholar] [CrossRef]
- Garbelini, L.G.; Franchini, J.C.; Debiasi, H.; Balbinot Junior, A.A.; Betioli Junior, E.; Telles, T.S. Profitability of soybean production models with diversified crops in the autumn–winter. J. Agron. 2020, 112, 4092–4103. [Google Scholar] [CrossRef]
- Batista, K.; Duarte, A.P.; Ceccon, G.; De Maria, I.C.; Cantarella, H. Acúmulo de matéria seca e de nutrientes em forrageiras consorciadas com maize em função da adubação nitrogenada. Pesqui. Agropecu. Bras. 2011, 46, 1154–1160. [Google Scholar] [CrossRef]
- Pereira, F.C.B.L.; Mello, L.M.M.; Pariz, C.M.; Mendonça, V.Z.; Yano, E.H.; Miranda, E.E.V.; Crusciol, C.A.C. Autumn maize intercropped with tropical grasss: Crop residues, nutrient cycling, subsequent soybean and soil quality. Rev. Bras. Cienc. Solo 2016, 40, 1–20. [Google Scholar] [CrossRef]
- Sapucay, M.J.L.C.; Coelho, A.E.; Bratti, F.; Locatelli, J.L.; Alvadi, L.S.; Balbinot Junior, A.; Zucareli, C. Nitrogen rates on the agronomic performance of second-crop maize single and intercropped with ruzigrass or showy rattlebox. Pesqui. Agropecu. Trop. 2020, 50, e65525. [Google Scholar] [CrossRef]
- Batista, K.; Giacomini, A.A.; Gerdes, L.; Mattos, W.T.; Otsuk, I.P. Impacts of the nitrogen application on productivity and nutrients concentrations of the maize-Congo grass intercropping system in the dry season. Acta Agric. Scand.-B Soil Plant Sci. 2019, 69, 567–577. [Google Scholar] [CrossRef]
- Santos, H.G.; Jacomine, P.K.T.; Anjos, L.H.C.; Oliveira, V.A.; Lumbreras, J.F.; Coelho, M.R.; Almeida, J.A.; Araújo Filho, J.C.; Oliveira, J.B.; Cunha, T.J.F. Sistema Brasileiro de Classificação de Solos, 5th ed.; Embrapa: Brasília, Brazil, 2018; 356p. [Google Scholar]
- United States Department of Agriculture. Keys to Soil Taxonomy, 12th ed.; United States Department of Agriculture, Natural Resources Conservation Service: Washington, WA, USA, 2014; 359p.
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.L.M.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef] [PubMed]
- Van Raij, B.; Cantarela, H.; Quaggio, J.A.; Furlani, A.M.C. Recomendações de Adubação e Calagem Para o Estado de São Paulo, 2nd ed.; Instituto Agronômico e Fundação IAC: Campinas, Brazil, 1997; 285p. [Google Scholar]
- Peiffer, J.A.; Romay, M.C.; Gore, M.A.; Flint-Garcia, S.A.; Zhang, Z.; Millard, M.J.; Gardner, C.A.C.; Mcmullen, M.D.; Holland, J.B.; Bradbury, P.J.; et al. The genetic architecture of maize height. Genetics 2014, 196, 1337–1356. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, A.L.; Kemanian, A.R.; Forest, C.E. The response of maize, sorghum, and soybean yield to growing-phase climate revealed with machine learning. Environ. Res. Lett. 2020, 15, 1–20. [Google Scholar] [CrossRef]
- Spackman, J.A.; Fernandez, F.G.; Coulter, J.A.; Kaiser, D.E.; Paiao, G. Soil texture and precipitation influence optimal time of nitrogen fertilization for maize. J. Agron. 2019, 111, 2018–2030. [Google Scholar] [CrossRef]
- Iseghohi, I.; Abe, A.; Meseka, S.; Mengesha, W.; Gedil, M.; Menkir, A. Effects of drought stress on grain yield, agronomic performance, and heterosis of marker-based improved provitamin-A maize synthetics and their hybrids. J. Crop Improv. 2021, 35, 1–21. [Google Scholar] [CrossRef]
pH(CaCl2) | O.M | P(resin) | SO4−2 | K(resin) | Ca(resin) | Mg(resin) | H + Al | Al | CEC | SB |
---|---|---|---|---|---|---|---|---|---|---|
g dm−3 | mg dm−3 | mmolc dm−3 | % | |||||||
4.7 | 30 | 4 | 9 | 1.5 | 10 | 7 | 47 | 3 | 66 | 28 |
Cropping Systems | N Rates (kg ha−1) | F Test for Regression | |||||
---|---|---|---|---|---|---|---|
0 | 50 | 100 | 150 | Means | Linear | Quadratic | |
Plant height (cm) | |||||||
maize monoculture | 171.50 a | 158.00 a | 182.00 a | 151.00 a | 165.63 a | 0.6089 | 0.7665 |
maize + Aruana Guinea grass | 168.75 a | 151.50 a | 160.75 a | 176.00 a | 164.25 a | 0.6857 | 0.5881 |
maize + Congo grass | 184.25 a | 176.00 a | 121.50 b | 146.00 a | 156.94 a | 0.0168 | 0.0327 |
Means | 174.83 | 161.83 | 154.75 | 157.67 | 0.1575 | 0.2556 | |
CV% | 10.35 ** | ||||||
Cob Height (cm) | |||||||
maize monoculture | 80.50 a | 72.75 a | 75.00 a | 67.25 a | 73.87 | 0.2689 | 0.9554 |
maize + Aruana Guinea grass | 67.00 a | 62.75 a | 69.50 ab | 81.25 a | 70.12 | 0.2190 | 0.3193 |
maize + Congo grass | 90.00 a | 85.25 a | 52.50 b | 67.50 a | 73.81 | 0.0380 | 0.0774 |
Means | 79.17 | 73.58 | 65.67 | 72.00 | 0.2117 | 0.2406 | |
CV% | 12.63 ** | ||||||
Grain yield (kg ha−1) | |||||||
maize monoculture | 1933.06 a | 1025.53 b | 1562.09 a | 602.42 b | 1280.77 a | 0.0190 | 0.0709 |
maize + Aruana Guinea grass | 1106.02 a | 1433.14 ab | 1348.75 ab | 1899.18 a | 1446.77 a | 0.0545 | 0.1532 |
maize + Congo grass | 1341.82 a | 1825.44 a | 733.39 b | 1138.45 ab | 1259.78 | 0.2033 | 0.4551 |
Means | 1460.30 | 1428.04 | 1214.74 | 1213.35 | 0.2231 | 0.4781 | |
CV% | 5.55 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Batista, K.; Giacomini, A.A.; Gerdes, L.; de Mattos, W.T. Cropping System and Nitrogen Supply Interfere in Sustainability of Maize Production in the Dry Season. Biol. Life Sci. Forum 2024, 30, 5. https://doi.org/10.3390/IOCAG2023-15828
Batista K, Giacomini AA, Gerdes L, de Mattos WT. Cropping System and Nitrogen Supply Interfere in Sustainability of Maize Production in the Dry Season. Biology and Life Sciences Forum. 2024; 30(1):5. https://doi.org/10.3390/IOCAG2023-15828
Chicago/Turabian StyleBatista, Karina, Alessandra Aparecida Giacomini, Luciana Gerdes, and Waldssimiler Teixeira de Mattos. 2024. "Cropping System and Nitrogen Supply Interfere in Sustainability of Maize Production in the Dry Season" Biology and Life Sciences Forum 30, no. 1: 5. https://doi.org/10.3390/IOCAG2023-15828
APA StyleBatista, K., Giacomini, A. A., Gerdes, L., & de Mattos, W. T. (2024). Cropping System and Nitrogen Supply Interfere in Sustainability of Maize Production in the Dry Season. Biology and Life Sciences Forum, 30(1), 5. https://doi.org/10.3390/IOCAG2023-15828