Enhancing Vegetative Growth of Quinoa and Soil Properties under Water Shortage through Targeted Organic Amendments †
Abstract
:1. Introduction
2. Material and Methods
2.1. Description of Treatments and Experimental Designs
2.1.1. Experiment 1
2.1.2. Experiment 2
2.2. Soil and Plant Growth-Related Parameters
3. Results
3.1. Soil- and Plant Growth-Related Parameters of Experiment 1
3.2. Soil- and Plant Growth-Related Parameters of Experiment 2
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Akram, Z.; Maqsood Ahmed Basra, S.; Bilal Hafeez, M.; Khan, S.; Nazeer, S.; Iqbal, S.; Sohail Saddiq, M.; Zahra, N. Adaptability and yield potential of new quinoa lines under agro-ecological conditions of Faisalabad-Pakistan. Asian J. Agric. Biol. 2021, 2, 2005301. [Google Scholar] [CrossRef]
- Yadav, R.; Gore, P.G.; Gupta, V.; Siddique, K.H. Quinoa (Chenopodium quinoa Willd.)—A smart crop for food and nutritional security. In Neglected and Underutilized Crops; Elsevier: Amsterdam, The Netherlands, 2023; pp. 23–43. [Google Scholar]
- Hafeez, M.B.; Iqbal, S.; Li, Y.; Saddiq, M.S.; Basra, S.M.; Zhang, H.; Zahra, N.; Akram, M.Z.; Bertero, D.; Curti, R.N. Assessment of phenotypic diversity in the USDA collection of quinoa links genotypic adaptation to germplasm origin. Plants 2022, 11, 738. [Google Scholar] [CrossRef]
- Issa Ali, O.; Fghire, R.; Anaya, F.; Benlhabib, O.; Wahbi, S. Physiological and Morphological Responses of two Quinoa Cultivars (Chenopodium quinoa Willd.) to Drought Stress. Gesunde Pflanz. 2019, 71, 123–133. [Google Scholar] [CrossRef]
- Quintana, J.R.; Martín-Sanz, J.P.; Valverde-Asenjo, I.; Molina, J.A. Drought differently destabilizes soil structure in a chronosequence of abandoned agricultural lands. Catena 2023, 222, 106871. [Google Scholar] [CrossRef]
- Chen, Y.; Lv, X.; Qin, Y.; Zhang, D.; Zhang, C.; Song, Z.; Liu, D.; Jiang, L.; Huang, B.; Wang, J. Effects of different botanical oil meal mixed with cow manure organic fertilizers on soil microbial community and function and tobacco yield and quality. Front. Microbiol. 2023, 14, 1191059. [Google Scholar] [CrossRef] [PubMed]
- Abideen, Z.; Koyro, H.-W.; Huchzermeyer, B.; Bilquees, G.; Khan, M.A. Impact of a biochar or a biochar-compost mixture on water relation, nutrient uptake and photosynthesis of Phragmites karka. Pedosphere 2020, 30, 466–477. [Google Scholar] [CrossRef]
- Akram, M.Z.; Libutti, A.; Rivelli, A.R. Evaluation of Vegetative Development of Quinoa under Water Stress by Applying Different Organic Amendments. Agronomy 2023, 13, 1412. [Google Scholar] [CrossRef]
- Manikandan, S.; Vickram, S.; Subbaiya, R.; Karmegam, N.; Chang, S.W.; Ravindran, B.; Awasthi, M.K. Comprehensive review on recent production trends and applications of biochar for greener environment. Bioresour. Technol. 2023, 388, 129725. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, X.; Mao, M.; Wang, X.; Shang, J. Carbon content determines the aggregation of biochar colloids from various feedstocks. Sci. Total Environ. 2023, 880, 163313. [Google Scholar] [CrossRef] [PubMed]
- Kishimoto, S. Charcoal as a soil conditioner. In Proceedings of the Symposium on Forest Product Research, International Achievements for the Future, Pretoria, South Africa, 22–26 April 1985; pp. 12–23. [Google Scholar]
- Azuara, M.; Sáiz, E.; Manso, J.A.; García-Ramos, F.J.; Manyà, J.J. Study on the effects of using a carbon dioxide atmosphere on the properties of vine shoots-derived biochar. J. Anal. Appl. Pyrolysis 2017, 124, 719–725. [Google Scholar] [CrossRef]
- Khan, Z.; Khan, M.N.; Zhang, K.; Luo, T.; Zhu, K.; Hu, L. The application of biochar alleviated the adverse effects of drought on the growth, physiology, yield and quality of rapeseed through regulation of soil status and nutrients availability. Ind. Crops Prod. 2021, 171, 113878. [Google Scholar] [CrossRef]
- Kammann, C.I.; Schmidt, H.-P.; Messerschmidt, N.; Linsel, S.; Steffens, D.; Müller, C.; Koyro, H.-W.; Conte, P.; Joseph, S. Plant growth improvement mediated by nitrate capture in co-composted biochar. Sci. Rep. 2015, 5, 11080. [Google Scholar] [CrossRef] [PubMed]
- Rees, F.; Germain, C.; Sterckeman, T.; Morel, J.-L. Plant growth and metal uptake by a non-hyperaccumulating species (Lolium perenne) and a Cd-Zn hyperaccumulator (Noccaea caerulescens) in contaminated soils amended with biochar. Plant Soil 2015, 395, 57–73. [Google Scholar] [CrossRef]
- Palansooriya, K.N.; Ok, Y.S.; Awad, Y.M.; Lee, S.S.; Sung, J.-K.; Koutsospyros, A.; Moon, D.H. Impacts of biochar application on upland agriculture: A review. J. Environ. Manag. 2019, 234, 52–64. [Google Scholar] [CrossRef] [PubMed]
- Qiang, M.; Gao, J.E.; Han, J.; Zhang, H.; Lin, T.; Long, S. How adding biochar improves loessal soil fertility and sunflower yield on consolidation project land on the Chinese loess plateau. Pol. J. Environ. Stud. 2020, 29, 3759–3769. [Google Scholar] [CrossRef]
- Stark, S.; Männistö, M.K.; Eskelinen, A. Nutrient availability and pH jointly constrain microbial extracellular enzyme activities in nutrient-poor tundra soils. Plant Soil 2014, 383, 373–385. [Google Scholar] [CrossRef]
- Tag, A.T.; Duman, G.; Ucar, S.; Yanik, J. Effects of feedstock type and pyrolysis temperature on potential applications of biochar. J. Anal. Appl. Pyrolysis 2016, 120, 200–206. [Google Scholar] [CrossRef]
- Chang, Y.; Rossi, L.; Zotarelli, L.; Gao, B.; Shahid, M.A.; Sarkhosh, A. Biochar improves soil physical characteristics and strengthens root architecture in Muscadine grape (Vitis rotundifolia L.). Chem. Biol. Technol. Agric. 2021, 8, 7. [Google Scholar] [CrossRef]
- Haider, G.; Koyro, H.-W.; Azam, F.; Steffens, D.; Müller, C.; Kammann, C. Biochar but not humic acid product amendment affected maize yields via improving plant-soil moisture relations. Plant Soil 2015, 395, 141–157. [Google Scholar] [CrossRef]
- Ramlow, M.; Foster, E.; Del Grosso, S.; Cotrufo, M. Broadcast woody biochar provides limited benefits to deficit irrigation maize in Colorado. Agric. Ecosyst. Environ. 2019, 269, 71–81. [Google Scholar] [CrossRef]
- Jeffery, S.; Verheijen, F.G.; van der Velde, M.; Bastos, A.C. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric. Ecosyst. Environ. 2011, 144, 175–187. [Google Scholar] [CrossRef]
- Rees, F.; Simonnot, M.-O.; Morel, J.-L. Short-term effects of biochar on soil heavy metal mobility are controlled by intra-particle diffusion and soil pH increase. Eur. J. Soil Sci. 2014, 65, 149–161. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, L.; Yang, H.; Yan, G.; Xu, Z.; Chen, C.; Zhang, D. Biochar nutrient availability rather than its water holding capacity governs the growth of both C3 and C4 plants. J. Soils Sediments 2016, 16, 801–810. [Google Scholar] [CrossRef]
Experimental | Soil-Related Parameters | Plant Growth | |||
---|---|---|---|---|---|
Factors | pH | EC | BD | TNP | TFW |
C | 7.8 B | 268 | 1.28 A | 13 B | 31.4 B |
Bw | 7.6 C | 297 | 1.19 B | 18 A | 34.6 A |
Bv | 8.0 A | 279 | 1.13 BC | 7 C | 18.6 C |
V | 7.8 B | 291 | 1.20 AB | 15 AB | 31.1 B |
Bw+V | 7.7 BC | 274 | 1.14 BC | 16 AB | 37.1 A |
Bv+V | 8.1 A | 302 | 1.05 C | 12 BC | 20.1 C |
Significance | *** | ns | *** | *** | *** |
Experimental | Soil-Related Parameters | Plant Growth | |||
---|---|---|---|---|---|
Factors | pH | EC | BD | TNP | TFW |
Bw0% | 7.85 A | 307 A | 1.32 A | 11 B | 14.6 B |
Bw2% | 7.79 B | 286 B | 1.23 A | 15 A | 19.7 A |
Bw4% | 7.82 A | 313 A | 1.06 B | 9 B | 16.5 B |
Significance | *** | * | ** | * | * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akram, M.Z.; Libutti, A.; Rivelli, A.R. Enhancing Vegetative Growth of Quinoa and Soil Properties under Water Shortage through Targeted Organic Amendments. Biol. Life Sci. Forum 2024, 30, 4. https://doi.org/10.3390/IOCAG2023-16532
Akram MZ, Libutti A, Rivelli AR. Enhancing Vegetative Growth of Quinoa and Soil Properties under Water Shortage through Targeted Organic Amendments. Biology and Life Sciences Forum. 2024; 30(1):4. https://doi.org/10.3390/IOCAG2023-16532
Chicago/Turabian StyleAkram, Muhammad Zubair, Angela Libutti, and Anna Rita Rivelli. 2024. "Enhancing Vegetative Growth of Quinoa and Soil Properties under Water Shortage through Targeted Organic Amendments" Biology and Life Sciences Forum 30, no. 1: 4. https://doi.org/10.3390/IOCAG2023-16532
APA StyleAkram, M. Z., Libutti, A., & Rivelli, A. R. (2024). Enhancing Vegetative Growth of Quinoa and Soil Properties under Water Shortage through Targeted Organic Amendments. Biology and Life Sciences Forum, 30(1), 4. https://doi.org/10.3390/IOCAG2023-16532