Evaluating the Synergistic Effects of Foliar Boron and Magnesium Application for Mitigating Drought in Wheat †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Soil Preparation and Seed Sowing
2.3. Growth Conditions and Treatments
2.4. Physiological Measurements and RWC
2.5. Growth and Yield Components
2.6. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Munaweera, T.I.; Jayawardana, N.U.; Rajaratnam, R.; Dissanayake, N. Modern plant biotechnology as a strategy in addressing climate change and attaining food security. Agric. Food Secur. 2022, 11, 26. [Google Scholar] [CrossRef]
- Hussain, M.; Farooq, S.; Hasan, W.; Ul-allah, S.; Tanveer, M. Drought stress in sunflower: Physiological effects and its management through breeding and agronomic alternatives. Agric. Water Manag. 2018, 201, 152–166. [Google Scholar] [CrossRef]
- Tyagi, M.; Pandey, G.C. Physiology of heat and drought tolerance in wheat: An overview. J. Careal Res. 2022, 14, 13–25. [Google Scholar] [CrossRef]
- Caser, M.; Angiolillo, F.D.; Chitarra, W.; Lovisolo, C.; Ruffoni, B.; Pistelli, L.; Pistelli, L.; Scariot, V. Ecophysiological and phytochemical responses of Salvia sinaloensis Fern. to drought stress. J. Plant Growth Regul. 2018, 84, 383–394. [Google Scholar] [CrossRef]
- Ru, C.; Hu, X.; Chen, D.; Song, T.W.; Wang, M.L.; Hansen, N.C. Nitrogen modulates the effects of short-term heat, drought and combined stresses after anthesis on photosynthesis, nitrogen metabolism, yield, and water and nitrogen use efficiency of wheat. Water 2022, 14, 1407. [Google Scholar] [CrossRef]
- Tuiwong, P.; Lordkaew, S.; Veeradittakit, J.; Jamjod, S.; Prom-u-thai, C. Efficacy of nitrogen and zinc application at different growth stages on yield, grain zinc, and nitrogen concentration in rice. Agronomy 2022, 12, 2093. [Google Scholar] [CrossRef]
- Awasthi, S.; Chauhan, R.; Srivastava, S. The importance of beneficial and essential trace and ultratrace elements in plant nutrition, growth, and stress tolerance. In Plant Nutrition and Food Security in the Era of Climate Change; Academic Press: Cambridge, MA, USA, 2022; pp. 27–46. [Google Scholar]
- Waraich, E.A.; Ahmad, R.; Saifullah, M.Y.; Ashraf, E. Role of mineral nutrition in alleviation of drought stress in plants. Aust. J. Crop Sci. 2011, 5, 764–777. [Google Scholar]
- Karim, M.R.; Zhang, Y.Q.; Zhao, R.R.; Chen, X.P.; Zhang, F.S.; Zou, C.Q. Alleviation of drought stress in winter wheat by late foliar application of zinc, boron, and manganese. J. Plant Nutr. Soil Sci. 2012, 175, 142–151. [Google Scholar] [CrossRef]
- Cakmak, I.; Yazici, A.M. Magnesium: A forgotten element in crop production. Better Crops 2010, 94, 23–25. [Google Scholar]
- Zadoks, J.C.; Chang, T.T.; Konzak, C.F. A decimal code for the growth stages of cereals. Weed Res. 1974, 14, 415–421. [Google Scholar] [CrossRef]
- Slatyer, R.O. Plant-Water Relationships; Academic Press: New York, NY, USA, 1967; p. 366. [Google Scholar]
- Siddiqui, H.; Singh, P.; Arif, Y.; Sami, F.; Naaz, R.; Hayat, S. Role of micronutrients in providing abiotic stress tolerance. In Microbial Biofertilizers and Micronutrient Availability; Khan, S.T., Malik, A., Eds.; Springer: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Wang, M.; Wang, R.; Mur, L.A.J. Functions of silicon in plant drought stress responses. Hortic. Res. 2021, 8, 254. [Google Scholar] [CrossRef] [PubMed]
- Aldahadha, A.; Warwick, N.W.M.; Backhouse, D. Water relations and yield of wheat (Triticum aestivum L.) exposed to interactions of drought and fungal root diseases (Rhizoctonia and Pythium). Arch. Agron. Soil Sci. 2019, 65, 507–520. [Google Scholar] [CrossRef]
- Thalooth, A.T.; Tawfik, M.M.; Magda, M.H. A comparative study on the effect of foliar application of zinc, potassium and magnesium on growth, yield and some chemical constituents of mungbean plants grown under water stress conditions. World J. Agric. Sci. 2006, 2, 37–46. [Google Scholar]
- Saad, A.O.M.; El-Kholy, M.A. Response of some faba bean to phosphorus and magnesium fertilization. Egypt. J. Agron. 2000, 22, 19–32. [Google Scholar]
- Wasaya, A.; Shabir, M.S.; Hussain, M.; Ansar, M.; Aziz, A.; Hassan, W.; Ahmad, I. Foliar application of zinc and boron improved the productivity and net returns of maize grown under rainfed conditions of pothwar plateau. J. Soil Sci. Plant Nutr. 2017, 17, 33–45. [Google Scholar] [CrossRef]
- Ahmad, S.; Kamran, M.; Ding, R.; Meng, X.; Wang, H.; Ahmad, I.; Fahad, S.; Han, Q. Exogenous melatonin confers drought stress by promoting plant growth, photosynthetic capacity and antioxidant defense system of maize seedlings. PeerJ 2019, 7, e7793. [Google Scholar] [CrossRef] [PubMed]
- Sayed, S.A. Impacts of boron application on maize plants growing under flooded and unflooded conditions. Biol. Plant. 1998, 41, 101–109. [Google Scholar] [CrossRef]
- Budak, H.; Kantar, M.; Kurtoglu, K.Y. Drought tolerance in modern and wild wheat. Sci. World J. 2013, 13, 548246. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Motagally, F.M.F.; El-Zohri, M. Improvement of wheat yield grown under drought stress by boron foliar application at different growth stages. J. Saudi Soc. Agric. Sci. 2018, 17, 178–185. [Google Scholar] [CrossRef]
- Aown, M.; Raza, S.; Saleem, M.F.; Anjum, S.A.; Khaliq, T.; Wahid, M.A. Foliar application of potassium under water deficit conditions improved the growth and yield of wheat (Triticum aestivum L.). J. Anim. Plant Sci. 2012, 22, 431–437. [Google Scholar]
Variety | Drought | Transpiration Rate | SPAD | RWC | |||
---|---|---|---|---|---|---|---|
Tillering | Anthesis | Tillering | Anthesis | Tillering | Anthesis | ||
Hourani | Day 0 | 4.92 | 10.84 | 52.06 | 53.39 | 91.93 | 92.28 |
Day 7 | 2.82 | 2.88 | 46.47 | 43.11 | 71.49 | 50.65 | |
Variety mean | 3.87 B | 6.8 A | 49.26 A | 48.25 A | 81.71 A | 71.47 A | |
Maru 1 | Day 0 | 4.78 | 10.59 | 52.16 | 53.53 | 92.34 | 92.09 |
Day 7 | 3.83 | 2.82 | 46.11 | 44.34 | 72.05 | 54.21 | |
Variety mean | 4.30 A | 6.70 A | 49.13 A | 48.93 A | 82.19 A | 73.15 A | |
Foliar treatment | |||||||
B | Day 0 | 4.82 | 10.78 | 50.95 | 54.33 | 92.18 | 92.55 |
Day 7 | 3.39 | 2.92 | 48.10 | 43.45 | 79.39 | 52.48 | |
Treatment mean | 4.11 A | 6.85 A | 49.53 A | 48.89 A | 85.78 A | 72.52 B | |
Mg | Day 0 | 4.86 | 10.87 | 52.85 | 54.03 | 92.79 | 90.97 |
Day 7 | 3.73 | 3.25 | 45.32 | 44.42 | 72.89 | 55.50 | |
Treatment mean | 4.29 A | 7.06 A | 49.08 A | 49.23 A | 82.84 A | 73.23 B | |
B + Mg | Day 0 | 4.79 | 11.01 | 53.07 | 53.28 | 91.84 | 92.53 |
Day 7 | 3.99 | 3.85 | 47.52 | 46.83 | 73.26 | 62.03 | |
Treatment mean | 4.39 A | 7.43 A | 50.29 A | 50.06 A | 82.55 A | 77.28 A | |
Control | Day 0 | 4.94 | 10.21 | 51.57 | 52.18 | 91.74 | 92.69 |
Day 7 | 2.18 | 1.38 | 44.22 | 40.20 | 61.52 | 39.72 | |
Treatment mean | 3.56 B | 5.79 B | 47.89 A | 46.19 B | 76.63 B | 66.21 C | |
LSD (0.05) | |||||||
Variety | 0.33 | 0.53 | 2.06 | 1.11 | 2.85 | 2.60 | |
Foliar treatment | 0.47 | 0.76 | 2.92 | 1.57 | 4.03 | 3.68 |
Main Effect | TN | HN | GN | TGW (g) | GW (g) | DMW (g) | HI |
---|---|---|---|---|---|---|---|
Variety | |||||||
Hourani | 9.0 b | 8.5 b | 310.1 b | 37.3 b | 12.1 b | 19.1 b | 0.37 b |
Maru 1 | 9.8 a | 9.3 a | 452.8 a | 42.6 a | 20.1 a | 22.3 a | 0.46 a |
Foliar treatment | |||||||
B | 9.5 a | 9.1 a | 396.4 a | 40.3 b | 16.8 a | 21.3 a | 0.42 a |
Mg | 9.5 a | 9.0 a | 383.1 a | 42.0 a | 16.8 a | 21.4 a | 0.42 a |
B + Mg | 9.3 a | 9.0 a | 405.2 a | 40.0 b | 16.9 a | 21.9 a | 0.42 a |
Control | 9.0 a | 8.5 a | 340.9 b | 37.4 c | 13.8 b | 18.1 b | 0.40 a |
LSD (0.05) | |||||||
Variety | 0.34 | 0.33 | 20.84 | 1.10 | 0.73 | 1.29 | 0.019 |
Foliar treatment | 0.49 | 0.47 | 29.48 | 1.56 | 1.04 | 1.82 | 0.027 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aldahadha, A.; Bani Khalaf, Y. Evaluating the Synergistic Effects of Foliar Boron and Magnesium Application for Mitigating Drought in Wheat. Biol. Life Sci. Forum 2024, 30, 15. https://doi.org/10.3390/IOCAG2023-15964
Aldahadha A, Bani Khalaf Y. Evaluating the Synergistic Effects of Foliar Boron and Magnesium Application for Mitigating Drought in Wheat. Biology and Life Sciences Forum. 2024; 30(1):15. https://doi.org/10.3390/IOCAG2023-15964
Chicago/Turabian StyleAldahadha, Abdallah, and Yahya Bani Khalaf. 2024. "Evaluating the Synergistic Effects of Foliar Boron and Magnesium Application for Mitigating Drought in Wheat" Biology and Life Sciences Forum 30, no. 1: 15. https://doi.org/10.3390/IOCAG2023-15964
APA StyleAldahadha, A., & Bani Khalaf, Y. (2024). Evaluating the Synergistic Effects of Foliar Boron and Magnesium Application for Mitigating Drought in Wheat. Biology and Life Sciences Forum, 30(1), 15. https://doi.org/10.3390/IOCAG2023-15964