Olive Oil Composition of Cv. Cobrançosa Is Affected by Regulated and Sustained Deficit Irrigation †
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Site Conditions
2.2. Olive Oil Samples
2.3. Evaluation of Quality Parameters
2.4. Index K225
2.5. Polyphenol Content
2.6. Total Content of Hydroxytyrosol and Tyrosol Derivatives: Acid Hydrolysis of Secoiridoids
2.7. Vitamin E Content
2.8. Fatty Acids Composition
3. Results
3.1. Plant Water Status
3.2. Quality Parameters and Bitterness Index
3.3. Effect of Irrigation Regime in Polyphenols and in the Total Content of Hydroxytyrosol and Tyrosol Derivatives and Health Cliam Evaluation
3.4. Fatty Acid Composition
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fernandes-Silva, A.A.; Ferreira, T.C.; Correia, C.M.; Malheiro, A.C.; Villalobos, F.J. Influence of different irrigation regimes on crop yield and water use efficiency of olive. Plant Soil 2010, 333, 35–47. [Google Scholar] [CrossRef]
- Moriana, A.; Organ, F.; Pastor, M.; Fereres, E. Yield responses of a mature olive orchard to water deficits. J. Am. Soc. Hortic. Sci. 2003, 128, 425–431. [Google Scholar] [CrossRef]
- Fereres, E.; Soriano, M.A. Deficit irrigation for reducing agricultural water use. J. Exp. Bot. 2006, 58, 147–159. [Google Scholar] [CrossRef] [PubMed]
- Moriana, A.; Pérez-López, D.; Gómez-Rico, A.; de los Desamparados Salvador, M.; Olmedilla, N.; Ribas, F.; Fregapane, G. Irrigation scheduling for traditional, low-density olive orchards: Water relations and influence on oil characteristics. Agric. Water Manag. 2007, 87, 171–179. [Google Scholar] [CrossRef]
- Fernandes-Silva, A.A.; Falco, V.; Correia, C.M.; Villalobos, F.J. Sensory analysis and volatile compounds of olive oil (cv. Cobrançosa) from different irrigation regimes. Grasas Aceites 2013, 61, 59–67. [Google Scholar] [CrossRef]
- Fernandes-Silva, A.A.; Gouveia, J.B.; Vasconcelos, P.; Ferreira, T.C.; Villalobos, F.J. Effect of different irrigation regimes on the quality attributes of monovarietal virgin olive oil from cv. ‘Cobrançosa’. Grasas Aceites 2013, 64, 41–49. [Google Scholar] [CrossRef]
- Motilva, M.J.; Tovar, M.J.; Romero, M.P.; Alegre, S.; Girona, J. Influence of regulated deficit irrigation strategies applied to olive trees (Arbequina cultivar) on oil yield and oil composition during the fruit ripening period. J. Sci. Food Agric. 2000, 80, 2037–2043. [Google Scholar] [CrossRef]
- Abaza, L.; Taamalli, W.; Ben Temime, S.; Daoud, D.; Gutierrez, F.; Zarrouk, M. Natural antioxidant composition as correlated to stability of some Tunisian virgin olive oils. Riv. Ital. Delle Sostanze Grasse 2005, 82, 12–18. [Google Scholar]
- European Food Safety Authority. EFSA panel on dietetic products, nutrition and allergies. scientific opinion on the substantiation of health claims related to polyphenols in olive oil and protection of LDL particles from oxidative damage. EFSA J. 2011, 9, 1–25. Available online: http://www.efsa.europa.eu/en/efsajournal/pub/2033.htm (accessed on 25 March 2020).
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Koppel-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- Fereres, E.; Castel, J.R. Drip Irrigation Management; Publication Leaflet 21259; Division of Agricultural Sciences, University of California: Berkeley, CA, USA, 1981. [Google Scholar]
- Fernandes-Silva, A.A.; López-Bernal, Á.; Ferreira, T.C.; Villalobos, F.J. Leaf water relations and gas exchange response to water deficit of olive (cv. Cobrançosa) in field grown conditions in Portugal. Plant Soil. 2016, 402, 191–209. [Google Scholar] [CrossRef]
- Beltran, G.; Uceda, M.; Hermoso, M.; Frias, L.M. Maduración. In El cultivo del olivo, 8th ed.; Barranco, D., Fernández-Escobar, R., Rallo, L., Eds.; Mundi-Prensa: Madrid, Spain, 2008; pp. 163–187. [Google Scholar]
- European Union Commission Regulation. Council Regulation (EC) No 1989/2003 of 21 October 2003, amending Regulation, No 2568/91 EEC on the characteristics of olive oil and olive-pomace oil and on the relevant methods of analysis modifies the No. 2568/91 EEC on olive oils and pomace olive oils characteristics and relative analysis methods. EU Off. J. Eur. Communities L 2003, 295, 56–57. [Google Scholar]
- Gutiérrez-Rosales, F.; Perdiguero, S.; Gutiérrez, R.; Olías, J.M. Evaluation of bitter taste in virgin olive oil. J. Am. Oil Chem. Soc. 1992, 69, 394–395. [Google Scholar] [CrossRef]
- Vázquez-Roncero, A.; Janer del Valle, C.; Janer del Valle, L. Determinación de los polifenoles totales enaceite de oliva. Grasas Aceites 1973, 243, 50–357. [Google Scholar]
- Romero, C.; Brenes, M. Analysis of total contents of hydroxytyrosol and tyrosol in olive oils. J. Agric. Food Chem. 2012, 60, 9017–9022. [Google Scholar] [CrossRef] [PubMed]
- Marx, I.M.G.; Casal, S.; Rodrigues, N.; Tresa, P.; Veloso, A.C.A.; Pereira, J.A.; Peres, A.M. Impact of the malaxation temperature on the phenolic profile of cv. Cobrançosa olive oils and assessment of the related health claim. Food Chem. 2021, 337, 27726. [Google Scholar] [CrossRef]
- Mastralexi, A.; Nenadis, N.; Tsimidou, M.Z. Addressing analytical requirements to support health claims on “olive oil polyphenols”. J. Agric. Food Chem. 2014, 62, 2459–2461. [Google Scholar] [CrossRef]
- Tsimidou, M.Z.; Nenadis, N.; Mastralexi, A.; Servili, M.; Butinar, B.; Vichi, S.; Toschi, T.G. Toward a harmonized and standardized protocol for the determination of total hydroxytyrosol and tyrosol content in virgin olive oil (VOO). The pros of a fit for the purpose ultra high-performance liquid chromatography (UHPLC) Procedure. Molecules 2019, 24, 2429. [Google Scholar] [CrossRef]
- Rodrigues, N.; Casal, S.; Pinho, T.; Peres, A.M.; Bento, A.; Baptista, P.; Pereira, J.A. Ancient olive trees as a source of olive oils rich in phenolic compounds. Food Chem. 2019, 276, 231–239. [Google Scholar] [CrossRef]
- Caruso, G.; Gucci, R.; Urbani, S.; Esposto, S.; Taticchi, A.; Di Maio, I.; Selvaggini, R.; Servili, M. Effect of different irrigation volumes during fruit development on quality of virgin olive oil of cv. Frantoio. Agric. Water Manag. 2014, 134, 94–103. [Google Scholar] [CrossRef]
- Garcia, J.M.; Cuevas, M.V.; Fernández, J.E. Production and oil quality in ‘Arbequina’ olive (Olea europaea L.) trees under two deficit irrigation strategies. Irrig.Sci. 2013, 31, 359–370. [Google Scholar] [CrossRef]
- Gómez del Campo, M.; García, J.M. Summer deficit-irrigation strategies in a hedgerow olive cv. Arbequina orchard: Effect on oil quality. J. Agric. Food Chem. 2013, 61, 8899–8905. [Google Scholar] [CrossRef] [PubMed]
- Ahumada-Orellana, L.E.; Ortega-Farías, S.; Searles, P.S. Olive oil quality response to irrigation cut-off strategies in a super-high density orchard. Agric. Water Manag. 2018, 202, 81–88. [Google Scholar] [CrossRef]
- Dag, A.; Naor, A.; Ben-Gal, A.; Harlev, G.; Zipori, I.; Schneider, D.; Birger, R.; Peres, M.; Gal, Y.; Kerem, Z. The effect of water stress on super-high-density ‘Koroneiki’ olive oil quality. J. Sci. Food Agric. 2015, 95, 2016–2020. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Rico, A.; Salvador, M.D.; Moriana, A.; Pérez, D.; Olmedilla, N.; Ribas, F.; Fregapane, G. Influence of different irrigation strategies in a traditional Cornicabra cv olive orchard on virgin olive oil composition and quality. Food Chem. 2007, 100, 568–578. [Google Scholar] [CrossRef]
- Stefanoudaki, E.; Chartzoulakis, K.; Koutsaftakis, A.; Kotsifaki, F. Effect of drought stress on qualitative characteristics of olive oil of cv Koroneiki. Grasas Aceites 2001, 52, 202–206. [Google Scholar] [CrossRef]
- Machado, M.; Felizardo, C.; Fernandes-Silva, A.A.; Nunes, F.M.; Barros, A. Polyphenolic compounds, antioxidant activity and l-phenylalanine ammonia-lyase activity during ripening of olive cv. “Cobrançosa” under different irrigation regimes. Food Res. Int. 2013, 51, 412–421. [Google Scholar] [CrossRef]
- García, J.M.; Hueso, A.; Gómez-del- Campo, M. Deficit irrigation during the oil synthesis period affects olive oil quality in high-density orchards (cv. Arbequina). Agric. Water Manag. 2020, 230, 105858. [Google Scholar] [CrossRef]
- Pereira, C.; Freitas, A.M.C.; Cabrita, M.J.; Garcia, R. Assessing tyrosol and hydroxytyrosol in Portuguese monovarietal olive oils: Revealing the nutraceutical potential by a combined spectroscopic and chromatographic techniques—Based approach. LWT-Food Sci. Technol. 2020, 118, 108797. [Google Scholar] [CrossRef]
- European Commission Regulation (EU). Establishing a List of Permitted Health Claims Made on Foods Other Than Those Referring to the Reduction of Disease Risk and to Children’s Development and Health. Off. J. Eur. Union L 2012, 136, 1–40. [Google Scholar]
- Hernández, M.L.; Padilla, M.N.; Sicardo, M.D.; Mancha, M.; Martínez-Rivas, J.M. Effect of different environmental stresses on the expression of oleate desaturase genes and fatty acid composition in olive fruit. Phytochemistry 2011, 72, 178–187. [Google Scholar] [CrossRef] [PubMed]
Treat. | Day of the Year (from 14 June to 25 October) | |||||||
---|---|---|---|---|---|---|---|---|
165 | 183 | 211 | 234 | 240 | 252 | 283 | 298 | |
FI120 | 92.9 ± 0.8 | 89.5 ± 3.2 | 87.8 ± 1.1 | 91.5 ± 2.5 | 91.3 ± 2.5 | 88.1 ± 3.4 | 88.5 ± 1.8 | 95.7 ± 1.0 |
FI | 94.5 ± 1.8 | 90.0 ± 2.3 | 89.5 ± 1.5 | 90.5 ± 1.8 | 88.9 ± 0.9 | 90.2 ± 0.7 | 85.9 ± 3.5 | 95.2 ± 1.7 |
SDI60 | 91.4 ± 2.9 | 86.2 ± 5.0 | 85.5 ± 4.0 | 82.7 ± 0.8 | 89.7 ± 2.1 | 80.8 ± 1.1 | 76.4 ± 1.6 | 96.8 ± 0.6 |
SDI30 | 90.7 ± 1.6 | 81.4 ± 3.5 | 73.5 ± 4.7 | 71.5 ± 5.2 | 82.6 ± 5.2 | 68.7 ± 5.1 | 61.9 ± 5.1 | 95.2 ± 1.7 |
RDI100 | 93.0 ± 1.1 | 91.4 ± 0.3 | 86.7 ± 2.1 | 85.0 ± 2.6 | 90 ± 1.8 | 91.4 ± 5.8 | 84.1 ± 3.1 | 96.1 ± 2.7 |
RDI60 | 92.6 ± 1.1 | 86.8 ± 2.3 | 79.3± 3.0 | 70.8 ± 4.4 | 88.6 ± 2.4 | 79.6 ± 6.0 | 72.2 ± 6.7 | 93.1 ± 1.8 |
Treatment 1 | Free Acidity | Peroxide Value | K232 | K270 | K225 |
---|---|---|---|---|---|
FI | 0.32 ± 0.01 | 9.0 ± 0.2 | 1.50 ± 0.27 | 0.07 ± 0.02 | 0.31 ± 0.01 |
FI120 | 0.31 ± 0.01 | 7.4 ± 0.2 | 1.40 ± 0.11 | 0.08 ± 0.00 | 0.12 ± 0.01 |
SDI60 | 0.27 ± 0.01 | 5.6 ± 0.2 | 1.25 ± 0.43 | 0.08 ± 0.02 | 0.43 ± 0.03 |
SDI30 | 0.18 ± 0.01 | 5.4 ± 0.2 | 1.26 ± 0.33 | 0.08 ± 0.01 | 0.21 ± 0.01 |
RDI100 | 0.23 ± 0.01 | 7.0 ± 0.3 | 1.25 ± 0.06 | 0.08 ± 0.01 | 0.40 ± 0.00 |
RDI60 | 0.25 ± 0.01 | 5.3 ± 0.2 | 1.17 ± 0.44 | 0.06 ± 0.02 | 0.45 ± 0.00 |
Treatment | Total Polyphenolics | Vitamin E | Hydroxytyrosol | Tyrosol | Hydroxytyrosol + Tyrosol |
---|---|---|---|---|---|
FI | 611.9 ± 12.6 | 269.2 ± 1.7 | 128.0 ± 4.6 | 118.6 ± 0.9 | 4.7 ± 0.1 |
FI120 | 462.6 ± 21.3 | 296.0 ± 8.4 | 122.9 ± 1.4 | 113.2 ± 1.5 | 4.9 ± 0.0 |
SDI60 | 677.4 ± 17.7 | 309.2 ± 5.0 | 139.0 ± 3.0 | 143.7 ± 0.5 | 5.7 ± 0.1 |
SDI30 | 548.6 ± 19.3 | 314.8 ± 0.6 | 178.6 ± 4.6 | 155.4 ± 3.3 | 6.7 ± 0.2 |
RDI100 | 735.7 ± 22.9 | 266.3 ± 3.0 | 106.8 ± 0.9 | 123.2 ± 1.0 | 4.6 ± 0.0 |
RDI60 | 762.1 ± 20.5 | 280.3 ± 2.0 | 51.4 ± 1.0 | 46.3 ± 0.1 | 2.0 ±0.0 |
Treatment | C16:0 | C18:1 | C18:2 | UFA/SAT | MUFA/PUFA |
---|---|---|---|---|---|
FI | 12.7 ± 0.1 | 71.3 ± 0.1 | 8.7 ± 0.0 | 4.7 ± 0.0 | 7.6 ± 0.0 |
F120 | 12.6 ± 0.1 | 72.4 ± 0.1 | 8.0 ± 0.0 | 4.8 ± 0.0 | 8.3 ± 0.0 |
SDI60 | 11.3 ± 0.0 | 72.1 ± 0.1 | 8.4 ± 0.0 | 4.8 ± 0.0 | 7.9 ± 0.0 |
SDI30 | 11.0 ± 0.0 | 72.1 ± 0.1 | 8.9 ± 0.1 | 5.0 ± 0.0 | 7.5 ± 0.1 |
RDI100 | 11.7 ± 0.4 | 71.8 ± 0.3 | 8.8 ± 0.1 | 4.9 ± 0.1 | 7.6 ± 0.0 |
RDI60 | 11.1 ± 0.0 | 72.7 ± 0.1 | 8.3 ± 0.1 | 4.9 ± 0.0 | 8.1 ± 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandes-Silva, A.; Marques, P.; Brito, T.; Canas, L.; Cruz, R.; Casal, S. Olive Oil Composition of Cv. Cobrançosa Is Affected by Regulated and Sustained Deficit Irrigation. Biol. Life Sci. Forum 2021, 3, 63. https://doi.org/10.3390/IECAG2021-09735
Fernandes-Silva A, Marques P, Brito T, Canas L, Cruz R, Casal S. Olive Oil Composition of Cv. Cobrançosa Is Affected by Regulated and Sustained Deficit Irrigation. Biology and Life Sciences Forum. 2021; 3(1):63. https://doi.org/10.3390/IECAG2021-09735
Chicago/Turabian StyleFernandes-Silva, Anabela, Pedro Marques, Thyago Brito, Luis Canas, Rebeca Cruz, and Susana Casal. 2021. "Olive Oil Composition of Cv. Cobrançosa Is Affected by Regulated and Sustained Deficit Irrigation" Biology and Life Sciences Forum 3, no. 1: 63. https://doi.org/10.3390/IECAG2021-09735
APA StyleFernandes-Silva, A., Marques, P., Brito, T., Canas, L., Cruz, R., & Casal, S. (2021). Olive Oil Composition of Cv. Cobrançosa Is Affected by Regulated and Sustained Deficit Irrigation. Biology and Life Sciences Forum, 3(1), 63. https://doi.org/10.3390/IECAG2021-09735