Classification of Hyperspectral Images with CNN in Agricultural Lands †
Abstract
:1. Introduction
2. Classification Methods
2.1. Support Vector Machines (SVM)
2.2. Convolutional Neural Networks (CNNs)
3. Experiments
3.1. Dataset Description
3.2. Experimental Results
4. Conclusions
Supplementary Materials
Acknowledgments
Conflicts of Interest
References
- Dalponte, M.; Bruzzone, L.; Vescovo, L.; Gianelle, D. The Role of Spectral Resolution and Classifier Complexity in the Analysis of Hyperspectral Images of Forest Areas. Remote Sens. Environ. 2009, 113, 2345–2355. [Google Scholar] [CrossRef]
- Gualtieri, J.A.; Chettri, S.R.; Cromp, R.F.; Johnson, L.F. Support Vector Machine Classifiers as Applied to AVIRIS Data. In Proceedings of the Eighth JPL Airborne Geoscience Workshop, Pasadena, CA, USA, 9–11 Feburary 1999. [Google Scholar]
- Chan, J.C.-W.; Paelinckx, D. Evaluation of Random Forest and Adaboost Tree-based Ensemble Classification and Spectral Band Selection for Ecotope Mapping Using Airborne Hyperspectral Imagery. Remote Sens. Environ. 2008, 112, 2999–3011. [Google Scholar] [CrossRef]
- Luo, Y.; Zou, J.; Yao, C.; Zhao, X.; Li, T.; Bai, G. HSI-CNN: A Novel Convolution Neural Network for Hyperspectral Image. In Proceedings of the 2018 International Conference on Audio, Language and Image Processing (ICALIP), IEEE, Beijing, China, 16 July 2018. [Google Scholar]
- Roy, S.K.; Krishna, G.; Dubey, S.R.; Chaudhuri, B.B. HybridSN: Exploring 3-D–2-D CNN Feature Hierarchy for Hyperspectral Image Classification. IEEE Geosci. Remot. Sens. Lett. 2019, 17, 277–281. [Google Scholar] [CrossRef] [Green Version]
- Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Vapnik, V. The Nature of Statistical Learning Theory; Springer: New York, NY, USA, 1995; p. 188. [Google Scholar]
- Pal, M.; Mather, P. Support Vector Machines for Classification in Remote Sensing. Int. J. Remote Sens. 2005, 26, 1007–1011. [Google Scholar] [CrossRef]
- Christovam, L.E.; Pessoa, G.G.; Shimabukuro, M.H.; Galo, M.L. Land Use and Land Cover Classification Using Hyperspectral Imagery: Evaluating the Performance of Spectral Angle Mapper, Support Vector Machine and Random Forest. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, Enschede, The Netherlands, 10–14 June 2019; pp. 1841–1847. [Google Scholar]
- Tuia, D.; Volpi, M.; Copa, L.; Kanevski, M.; Munoz-Mari, J. A survey of active learning algorithms for supervised remote sensing image classification. IEEE J. Sel. Top. Signal Process. 2011, 5, 606–617. [Google Scholar] [CrossRef]
- Kavzoglu, T.; Colkesen, I. A Kernel Functions Analysis for Support Vector Machines for Land Cover Classification. Int. J. Appl. Earth Obs. Geoinf. 2009, 11, 352–359. [Google Scholar] [CrossRef]
- Mountrakis, G.; Im, J.; Ogole, C. Support Vector Machines in Remote Sensing: A Review. ISPRS J. Photogramm. Remote Sens. 2011, 66, 247–259. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio YHinton, G. Deep Learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Liu, Y.; Oerlemans, A.; Lao, S.; Wu, S.; Lew, M.S. Deep Learning for Visual Understanding: A Review. Neurocomputing 2016, 187, 27–48. [Google Scholar] [CrossRef]
- Aloysius, N.; Geetha, M. A Review on Deep Convolutional Neural Networks. In Proceedings of the 2017 International Conference on Communication and Signal Processing (ICCSP), IEEE, Chennai, India, 6–8 April 2017. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015. [Google Scholar]
- Karantzalos, K.; Karakizi, C.; Kandylakis, Z.; Antoniou, G. (Eds.) HyRANK Hyperspectral Satellite Dataset I (Version v001); I.W. III/4; ISPRS: Hannover, Germany, 2018. [Google Scholar] [CrossRef]
- Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. Tensorflow: A system for large-scale machine learning. In Proceedings of the 12th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 16), Savannah, GA, USA, 2–4 November 2016. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
Layer | Type | SS Data Set | HL Data Set | ||
---|---|---|---|---|---|
Output Shape | # of Learnable Parameters | Output Shape | # of Learnable Parameters | ||
1 | Input | (None,7,7,15,1) | 0 | (None,7,7,15,1) | 0 |
2 | 3D convolution | (None,5,5,9,8) | 2312 | (None,5,5,9,8) | 2312 |
3 | 3D convolution | (None,3,3,5,16) | 6496 | (None,3,3,5,16) | 6496 |
4 | Reshape | (None,3,3,80) | 0 | (None,3,3,80) | 0 |
5 | 2D convolution | (None,1,1,64) | 46,208 | (None,1,1,64) | 46,208 |
6 | Flatten | (None,64) | 0 | (None,64) | 0 |
7 | Dense | (None,256) | 16,896 | (None,256) | 16,896 |
8 | Dropout (40%) | (None,256) | 0 | (None,256) | 0 |
9 | Dense | (None,128) | 33,024 | (None,128) | 33,024 |
10 | Dropout (40%) | (None,128) | 0 | (None,128) | 0 |
11 | Dense | (None,16) | 2064 | (None,14) | 1806 |
Total number of learnable parameters: | 107,000 | 106,742 |
SS Dataset | HL Dataset | |||||
---|---|---|---|---|---|---|
# | Class Name | Train | Test | Class Name | Train | Test |
1 | Brocoli_green_weeds_1 | 150 | 1859 | Dense urban fabric | 150 | 138 |
2 | Brocoli_green_weeds_2 | 150 | 3576 | Mineral extraction sites | 30 | 37 |
3 | Fallow | 150 | 1826 | Non-irrigated arable land | 150 | 392 |
4 | Fallow_rough_plow | 150 | 1244 | Fruit trees | 30 | 49 |
5 | Fallow_smooth | 150 | 2528 | Olive groves | 150 | 1251 |
6 | Stubble | 150 | 3809 | Broad-leaved forest | 150 | 73 |
7 | Celery | 150 | 3429 | Coniferous forest | 150 | 350 |
8 | Grapes_untrained | 150 | 11,121 | Mixed forest | 150 | 922 |
9 | Soil_vinyard_develop | 150 | 6053 | Dense sclerophyllous vegetation | 150 | 3643 |
10 | Corn_senesced_green_weeds | 150 | 3128 | Sparce sclerophyllous vegetation | 150 | 2653 |
11 | Lettuce_romaine_4wk | 150 | 918 | Sparsely vegetated areas | 150 | 254 |
12 | Lettuce_romaine_5wk | 150 | 1777 | Rocks and sand | 150 | 337 |
13 | Lettuce_romaine_6wk | 150 | 766 | Water | 150 | 1243 |
14 | Lettuce_romaine_7wk | 150 | 920 | Coastal water | 150 | 301 |
15 | Vinyard_untrained | 150 | 7118 | |||
16 | Vinyard_vertical_trellis | 150 | 1657 |
Class ID | SS Dataset | HL Dataset | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SVM | CNN | SVM | CNN | |||||||||
PA | UA | f Score | PA | UA | f Score | PA | UA | f Score | PA | UA | f Score | |
1 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.47 | 0.88 | 0.61 | 0.62 | 0.97 | 0.76 |
2 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.84 | 0.91 | 0.97 | 1.00 | 0.99 |
3 | 0.97 | 0.98 | 0.98 | 0.99 | 1.00 | 0.99 | 0.79 | 0.88 | 0.83 | 0.85 | 0.91 | 0.88 |
4 | 0.98 | 0.99 | 0.99 | 0.99 | 1.00 | 0.99 | 0.70 | 0.57 | 0.63 | 0.79 | 0.86 | 0.82 |
5 | 0.98 | 0.98 | 0.98 | 0.99 | 0.99 | 0.99 | 0.92 | 0.89 | 0.90 | 0.97 | 0.93 | 0.95 |
6 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.16 | 0.82 | 0.27 | 0.20 | 0.99 | 0.34 |
7 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.45 | 0.84 | 0.59 | 0.56 | 0.86 | 0.68 |
8 | 0.83 | 0.79 | 0.81 | 0.92 | 0.88 | 0.90 | 0.49 | 0.69 | 0.58 | 0.70 | 0.83 | 0.75 |
9 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.83 | 0.56 | 0.67 | 0.85 | 0.64 | 0.73 |
10 | 0.96 | 0.97 | 0.97 | 0.97 | 0.99 | 0.98 | 0.80 | 0.80 | 0.80 | 0.79 | 0.81 | 0.80 |
11 | 0.94 | 0.99 | 0.97 | 0.99 | 1.00 | 1.00 | 0.67 | 0.96 | 0.79 | 0.81 | 0.99 | 0.89 |
12 | 0.99 | 1.00 | 0.99 | 1.00 | 1.00 | 1.00 | 0.88 | 0.95 | 0.92 | 0.83 | 0.96 | 0.89 |
13 | 0.99 | 0.99 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
14 | 0.96 | 0.99 | 0.97 | 0.99 | 1.00 | 0.99 | 1.00 | 1.00 | 1.00 | 0.99 | 1.00 | 1.00 |
15 | 0.70 | 0.74 | 0.72 | 0.84 | 0.88 | 0.86 | ||||||
16 | 0.99 | 1.00 | 0.99 | 0.98 | 1.00 | 0.99 | ||||||
OA | 91.36 | 95.68 | 76.37 | 81.38 | ||||||||
κ | 90.36 | 95.17 | 72.05 | 77.77 | ||||||||
time (s) | 31.72 | 28.85 | 21.10 | 23.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seyrek, E.C.; Uysal, M. Classification of Hyperspectral Images with CNN in Agricultural Lands. Biol. Life Sci. Forum 2021, 3, 6. https://doi.org/10.3390/IECAG2021-09739
Seyrek EC, Uysal M. Classification of Hyperspectral Images with CNN in Agricultural Lands. Biology and Life Sciences Forum. 2021; 3(1):6. https://doi.org/10.3390/IECAG2021-09739
Chicago/Turabian StyleSeyrek, Eren Can, and Murat Uysal. 2021. "Classification of Hyperspectral Images with CNN in Agricultural Lands" Biology and Life Sciences Forum 3, no. 1: 6. https://doi.org/10.3390/IECAG2021-09739
APA StyleSeyrek, E. C., & Uysal, M. (2021). Classification of Hyperspectral Images with CNN in Agricultural Lands. Biology and Life Sciences Forum, 3(1), 6. https://doi.org/10.3390/IECAG2021-09739