A Case Study about the Use of Precision Agriculture Technology Applied to a Zn Biofortification Workflow for Grapevine Vitis vinifera cv Moscatel †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Field
2.2. Field Morphology and Vigor of the Vine
2.3. Quantification of Zn in Grapes
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Berners-Lee, M.; Kennelly, C.; Watson, R.; Hewitt, C.N. Current global food production is sufficient to meet human nutritional needs in 2050 provided there is radical societal adaptation. Elem. Sci. Anth. 2018, 6–52. [Google Scholar] [CrossRef]
- Lowe, N.M.; Zaman, M.; Moran, V.H.; Ohly, H.; Sinclair, J.; Fatima, S.; Broadley, M.R.; Joy, E.J.M.; Mahboob, U.; Lark, M.; et al. Biofortification of wheat with zinc for eliminating deficiency in Pakistan: Study protocol for a cluster-randomised, double-blind, controlled effectiveness study (BIZIFED2). BMJ 2020, 10. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.X.; Koh, J.; Pang, J. Association between micronutrient deficiency and acute respiratory infections in healthy adults: A systematic review of observational studies. Nutr. J. 2018, 18, 80. [Google Scholar] [CrossRef] [Green Version]
- Di Gioia, F.; Petropoulos, S.A.; Ozores-Hampton, M.; Morgan, K.; Rosskopf, E.N. Zinc and iron agronomic biofortification of Brassicaceae microgreens. J. Agron. 2019, 9, 677. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Xie, X.; Read, P.; Loseke, B.; Gamet, S.; Li, W.; Xu, C. Biofortification with selenium and lithium improves nutraceutical properties of major winery grapes in the Midwestern United States. J. Food Sci. Technol. 2020, 56, 825–837. [Google Scholar] [CrossRef]
- De Valença, A.W.; Bake, A.; Brouwer, I.D.; Giller, K.E. Agronomic biofortification of crops to fight hidden hunger in sub-Saharan Africa. Glob. Food Sec. 2017, 12, 8–14. [Google Scholar] [CrossRef]
- Chasapis, C.T.; Loutsidou, A.C.; Spiliopoulou, C.A.; Srefanidou, M.E. Zinc and human health: An update. Arch. Toxicol. 2011, 86, 521–534. [Google Scholar] [CrossRef] [PubMed]
- Radoglou-Grammatikis, P.; Sarigiannidis, P.; Lagkas, T.; Moscholios, I. A Compilation of UAV applications for precision agriculture. Comput. Netw. 2020, 172, 107148. [Google Scholar] [CrossRef]
- Tsouros, D.C.; Bibi, S.; Sarigiannidis, P.G. A Review on UAV-based applications for precision agriculture. Information 2019, 10, 349. [Google Scholar] [CrossRef] [Green Version]
- Khan, N.; Fahad, S.; Naushad, M.; Faisal, S. Grape production critical review in the world. SSRN 2020. [Google Scholar] [CrossRef]
- Coelho, A.R.F.; Lidon, F.C.; Pessoa, C.C.; Marques, A.C.; Luís, I.C.; Caleiro, J.C.; Simões, M.; Kullberg, J.; Legoinha, P.; Brito, G.; et al. Can foliar pulverization with CaCl2 and Ca(NO3)2 trigger Ca enrichment in Solanum Tuberosum L. tubers? Plants 2021, 10, 245. [Google Scholar] [CrossRef]
- Pelica, J.; Barbosa, S.; Lidon, F.; Pessoa, M.F.; Reboredo, F.; Calvão, T. The paradigm of high concentration 252 of metals of natural or anthropogenic origin in soils—The case of Neves-Corvo mine area (Southern 253 Portugal). J. Geochem. Explor. 2018, 186, 12–23. [Google Scholar] [CrossRef]
- Zombardo, A.; Mica, E.; Puccioni, S.; Perria, R.; Valentini, P.; Mattii, G.B.; Cattivelli, L.; Storchi, P. Berry Quality of grapevine under water stress as affected by rootstock–scion interactions through gene expression regulation. J. Agron. 2020, 10, 680. [Google Scholar] [CrossRef]
- Ju, Y.; Yue, X.; Zhao, X.; Zhao, H.; Fang, Y. Physiological, micro-morphological and metabolomic analysis of grapevine (Vitis vinifera L.) leaf of plants under water stress. Plant Physiol. Biochem. 2018, 130, 501–510. [Google Scholar] [CrossRef] [PubMed]
- Fraga, H.; García de Cortázar Atauri, I.; Santos, J. Viticultural irrigation demands under climate change scenarios in Portugal. Agric. Water Manag. 2018, 196, 66–74. [Google Scholar] [CrossRef]
- Saccon, P. Water for agriculture, irrigation management. Agric. Ecosyst. Environ. Appl. Soil Ecol. 2018, 123, 793–796. [Google Scholar] [CrossRef]
- Harden, C.P. Infiltration. In International Encyclopedia of Geography: People, the Earth, Environment and Technology; Wiley: Hoboken, NJ, USA, 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Maqbool, A.; Abrar, M.; Bakhsh, A.; Çalışkan, S.; Khan, H.Z.; Aslam, M.; Aksoy, E. Biofortification under climate change: The fight between quality and quantity. In Environment, Climate, Plant and Vegetation Growth; Springer: Berlin, Germany, 2020; pp. 173–227. [Google Scholar] [CrossRef]
- Bhatt, R.; Hossain, A.; Sharma, P. Zinc biofortification as an innovative technology to alleviate the zinc deficiency in human health: A review. Open Agric. 2020, 5, 176–187. [Google Scholar] [CrossRef]
- Shivay, Y.S.; Prasad, R.; Rahal, A. Relative efficiency of zinc oxide and zinc sulphate-enriched urea for 229 spring wheat. Nutr. Cycl. Agroecosyst. 2008, 82, 259–264. [Google Scholar] [CrossRef]
- Easterday, K.; Kislik, C.; Dawson, T.; Hogan, S.; Kelly, M. Remotely sensed water limitation in vegetation: Insights from an experiment with unmanned aerial vehicles (UAVs). Remote Sens. 2019, 11, 1853. [Google Scholar] [CrossRef] [Green Version]
- Reddy, D.S.; Prasad, P.R.C. Prediction of vegetation dynamics using NDVI time series data and LSTM. MESE 2018, 4, 409–419. [Google Scholar] [CrossRef]
Slope Classes (%) | Surface Drainage | Area (m2) | % Area |
---|---|---|---|
[0–5%] | Reduced | 589.9 | 34.87 |
[5–20%] | Moderate | 1080.5 | 63.86 |
>20% | Elevated | 21.4 | 1.27 |
Total | 1691.8 | 100 |
Moscatel Variety | Zn (ppm) | |
---|---|---|
Mean | SE | |
Control | 6.04a | ±0.67 |
OZn60 | 6.44a | ±0.50 |
OZn90 | 7.91a | ±0.28 |
SZn60 | 6.58a | ±0.65 |
SZn90 | 7.49a | ±0.75 |
Treatment | Mean | SE |
---|---|---|
Control | 0.58 | 0.18 |
OZn60 | 0.61 | 0.16 |
OZn90 | 0.61 | 0.18 |
SZn60 | 0.64 | 0.15 |
SZn90 | 0.64 | 0.14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daccak, D.; Luís, I.C.; Marques, A.C.; Coelho, A.R.F.; Pessoa, C.C.; Silva, M.M.; Simões, M.; Reboredo, F.H.; Pessoa, M.F.; Legoinha, P.; et al. A Case Study about the Use of Precision Agriculture Technology Applied to a Zn Biofortification Workflow for Grapevine Vitis vinifera cv Moscatel. Biol. Life Sci. Forum 2021, 3, 2. https://doi.org/10.3390/IECAG2021-09663
Daccak D, Luís IC, Marques AC, Coelho ARF, Pessoa CC, Silva MM, Simões M, Reboredo FH, Pessoa MF, Legoinha P, et al. A Case Study about the Use of Precision Agriculture Technology Applied to a Zn Biofortification Workflow for Grapevine Vitis vinifera cv Moscatel. Biology and Life Sciences Forum. 2021; 3(1):2. https://doi.org/10.3390/IECAG2021-09663
Chicago/Turabian StyleDaccak, Diana, Inês Carmo Luís, Ana Coelho Marques, Ana Rita F. Coelho, Cláudia Campos Pessoa, Maria Manuela Silva, Manuela Simões, Fernando H. Reboredo, Maria Fernanda Pessoa, Paulo Legoinha, and et al. 2021. "A Case Study about the Use of Precision Agriculture Technology Applied to a Zn Biofortification Workflow for Grapevine Vitis vinifera cv Moscatel" Biology and Life Sciences Forum 3, no. 1: 2. https://doi.org/10.3390/IECAG2021-09663
APA StyleDaccak, D., Luís, I. C., Marques, A. C., Coelho, A. R. F., Pessoa, C. C., Silva, M. M., Simões, M., Reboredo, F. H., Pessoa, M. F., Legoinha, P., Brito, M. G., Kullberg, J. C., Almeida, J. A., Campos, P. S., Ramalho, J. C., Caleiro, J., & Lidon, F. C. (2021). A Case Study about the Use of Precision Agriculture Technology Applied to a Zn Biofortification Workflow for Grapevine Vitis vinifera cv Moscatel. Biology and Life Sciences Forum, 3(1), 2. https://doi.org/10.3390/IECAG2021-09663